Câu hỏi:
03/10/2024 524Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp số: \(\frac{{85}}{2}.\)
Để đường thẳng \(y = ax + b\) đi qua điểm \(M\left( {3;\,\, - 5} \right)\) thì thay \(x = 3,\,\,y = - 5\) vào hàm số \(y = ax + b\), ta được: \( - 5 = 3a + b\).
Tương tự, để đường thẳng đi qua điểm \(N\left( {1;\,\,2} \right)\), ta có: \(2 = a + b\).
Ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{l}}{3a + b = - 5}\\{a + b = 2}\end{array}} \right.\).
Trừ từng vế phương trình thứ nhất cho phương trình thứ hai của hệ trên, ta được:
\(2a = - 7,\) suy ra \(a = - \frac{7}{2}\).
Thay \(a = - \frac{7}{2}\) vào phương trình \(a + b = 2\), ta được:
\( - \frac{7}{2} + b = 2,\) suy ra \(b = \frac{{11}}{2}\).
Vậy, tổng bình phương của \(a\) và \(b\) là \({a^2} + {b^2} = {\left( { - \frac{7}{2}} \right)^2} + {\left( {\frac{{11}}{2}} \right)^2} = \frac{{85}}{2}.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
b) Tính chiều cao của một ngọn núi (kết quả làm tròn đến hàng đơn vị), biết tại hai điểm \(A,\,\,B\) cách nhau \[500{\rm{\;m,}}\] người ta nhìn thấy đỉnh núi với góc nâng lần lượt là \(34^\circ \) và \(38^\circ \) (hình vẽ).
Câu 2:
a) Tìm các hệ số \(x\) và \(y\) trong phản ứng hóa học đã được cân bằng sau:
\[x{\rm{Fe}}{\left( {{\rm{OH}}} \right)_3} \to {\rm{F}}{{\rm{e}}_2}{{\rm{O}}_3} + y{{\rm{H}}_2}{\rm{O}}.\]
Từ đó, hãy hoàn thiện phương trình phản ứng hóa học sau khi được cân bằng.
b) Giải bài toán sau bằng cách lập hệ phương trình:
Câu 3:
Câu 4:
Cho tam giác \(ABC\) có \(AB = 5{\rm{\;cm}},\,\,BC = 12{\rm{\;cm}}\) và \(CA = 13{\rm{\;cm}}.\) Tính số đo góc \(C\) (làm tròn kết quả đến phút).
Câu 5:
Cho góc \(\alpha \) thỏa mãn \[0^\circ < \alpha < 90^\circ .\] Chứng minh rằng:
\[\frac{{\sin \alpha + \cos \alpha - 1}}{{1 - \cos \alpha }} = \frac{{2\cos \alpha }}{{\sin \alpha - \cos \alpha + 1}}.\]
Câu 6:
Cho hai số \(a,\,\,b\) và \[a > 1 > b.\]
a) \(a - 1 > 0.\) b) \(a - b < 0.\)
c) \(\left( {a - 1} \right)\left( {b - 1} \right) < 0.\) d) \(a - 2b < - 1.\)
Câu 7:
về câu hỏi!