Câu hỏi:

03/10/2024 419

Giải các phương trình và bất phương trình sau:

a) \(\left( {1 - 2x} \right)\left( {x + 5} \right) = 0.\)          b) \(\frac{{2x - 5}}{{x + 4}} + \frac{x}{{4 - x}} = \frac{{17x - 56}}{{16 - {x^2}}}.\)   

c) \[{\left( {x - 1} \right)^2} < x\left( {x + 3} \right).\]    d) \[\frac{{4x - 1}}{2} + \frac{{6x - 19}}{6} \ge \frac{{9x - 11}}{3}.\]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) \(\left( {1 - 2x} \right)\left( {x + 5} \right) = 0\)

\(1 - 2x = 0\) hoặc \(x + 5 = 0\)

\(2x = 1\) hoặc \(x = - 5\)

\(x = \frac{1}{2}\) hoặc \(x = - 5\)

Vậy phương trình đã cho có nghiệm là \(x = \frac{1}{2};\,\,x = - 5.\)

b) Điều kiện xác định: \(x \ne 4,\,\,x \ne - 4.\)

\(\frac{{2x - 5}}{{x + 4}} + \frac{x}{{4 - x}} = \frac{{17x - 56}}{{16 - {x^2}}}\)

\(\frac{{2x - 5}}{{x + 4}} - \frac{x}{{x - 4}} = \frac{{ - 17x + 56}}{{{x^2} - 16}}\)

\(\frac{{\left( {2x - 5} \right)\left( {x - 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} - \frac{{x\left( {x + 4} \right)}}{{\left( {x - 4} \right)\left( {x + 4} \right)}} = \frac{{ - 17x + 56}}{{\left( {x - 4} \right)\left( {x + 4} \right)}}\)

\(\left( {2x - 5} \right)\left( {x - 4} \right) - x\left( {x + 4} \right) = - 17x + 56\)

\(2{x^2} - 8x - 5x + 20 - {x^2} - 4x = - 17x + 56\)

\({x^2} = 36\)

\(x = 6\) (thõa mãn) hoặc \(x = - 6\) (thõa mãn).

Vậy nghiệm của phương trình đã cho là \(x = 6;\,\,x = - 6.\)

c) \[{\left( {x - 1} \right)^2} < x\left( {x + 3} \right)\]

\[{x^2} - 2x + 1 < {x^2} + 3x\]

\[ - 5x < - 1\]

    \[x > \frac{1}{5}\]

Vậy nghiệm bất phương trình đã cho là \[x > \frac{1}{5}.\]

d) \[\frac{{4x - 1}}{2} + \frac{{6x - 19}}{6} \ge \frac{{9x - 11}}{3}\]

\[\frac{{3\left( {4x - 1} \right)}}{6} + \frac{{6x - 19}}{6} \ge \frac{{2\left( {9x - 11} \right)}}{6}\]

\[3\left( {4x - 1} \right) + 6x - 19 \ge 2\left( {9x - 11} \right)\]

\[12x - 3 + 6x - 19 \ge 18x - 22\]

\[12x + 6x - 18x \ge - 22 + 3 + 19\]

                  \[0x \ge 0\].

Vậy nghiệm của bất phương trình đã cho là \(x \in \mathbb{R}.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

a) Cho tam giác \(ABC\) có \[AB = 4{\rm{\;cm}}\], \[BC = 4,5{\rm{\;cm}}\], \[\widehat {B\,} = 40^\circ \]. Gọi \(AH\) là đường cao kẻ từ đỉnh \(A\) của tam giác. Tính độ dài các đoạn thẳng \(AH,\,\,BH,\,\,AC\) và số đo góc \(C\) của tam giác \(ABC\) (kết quả làm tròn đến hàng phần trăm của cm và làm tròn đến phút của số đo góc). (ảnh 1)
a) Cho tam giác \(ABC\) có \[AB = 4{\rm{\;cm}}\], \[BC = 4,5{\rm{\;cm}}\], \[\widehat {B\,} = 40^\circ \]. Gọi \(AH\) là đường cao kẻ từ đỉnh \(A\) của tam giác. Tính độ dài các đoạn thẳng \(AH,\,\,BH,\,\,AC\) và số đo góc \(C\) của tam giác \(ABC\) (kết quả làm tròn đến hàng phần trăm của cm và làm tròn đến phút của số đo góc).

b) Tính chiều cao của một ngọn núi (kết quả làm tròn đến hàng đơn vị), biết tại hai điểm \(A,\,\,B\) cách nhau \[500{\rm{\;m,}}\] người ta nhìn thấy đỉnh núi với góc nâng lần lượt là \(34^\circ \) và \(38^\circ \) (hình vẽ).

Xem đáp án » 03/10/2024 13,611

Câu 2:

a) Tìm các hệ số \(x\) và \(y\) trong phản ứng hóa học đã được cân bằng sau:

\[x{\rm{Fe}}{\left( {{\rm{OH}}} \right)_3} \to {\rm{F}}{{\rm{e}}_2}{{\rm{O}}_3} + y{{\rm{H}}_2}{\rm{O}}.\]

Từ đó, hãy hoàn thiện phương trình phản ứng hóa học sau khi được cân bằng.   

b) Giải bài toán sau bằng cách lập hệ phương trình:

Một ôtô dự định đi từ A đến B trong khoảng thời gian nhất định. Nếu ôtô chạy nhanh hơn 10 km/h mỗi giờ thì đến nơi sớm hơn so với dự định là 3 giờ. Nếu ôtô chạy chậm hơn 10 km/h mỗi giờ thì đến nơi chậm mất so với dự định là 5 giờ. Tính vận tốc và thời gian dự định của ôtô.

Xem đáp án » 03/10/2024 7,283

Câu 3:

Trong các phương trình sau phương trình nào không phải là phương trình bậc nhất hai ẩn?

Xem đáp án » 03/10/2024 6,483

Câu 4:

Cho góc \(\alpha \) thỏa mãn \[0^\circ  < \alpha  < 90^\circ .\] Chứng minh rằng:

\[\frac{{\sin \alpha  + \cos \alpha  - 1}}{{1 - \cos \alpha }} = \frac{{2\cos \alpha }}{{\sin \alpha  - \cos \alpha  + 1}}.\]

Xem đáp án » 03/10/2024 3,685

Câu 5:

Cho tam giác \(ABC\) có \(AB = 5{\rm{\;cm}},\,\,BC = 12{\rm{\;cm}}\) và \(CA = 13{\rm{\;cm}}.\) Tính số đo góc \(C\) (làm tròn kết quả đến phút).

Xem đáp án » 03/10/2024 2,680

Câu 6:

Cho hai số \(a,\,\,b\) và \[a > 1 > b.\]

a) \(a - 1 > 0.\)                                                    b) \(a - b < 0.\)

c) \(\left( {a - 1} \right)\left( {b - 1} \right) < 0.\)         d) \(a - 2b <  - 1.\)

Xem đáp án » 03/10/2024 1,795

Câu 7:

Cho góc \(\alpha \) thỏa mãn \(0^\circ < \alpha < 90^\circ \). Biết \(\tan \alpha = \frac{4}{3}\). Giá trị của \(\cot \left( {90^\circ - \alpha } \right)\) bằng 

Xem đáp án » 03/10/2024 1,307
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua