Câu hỏi:

04/10/2024 1,119 Lưu

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ dưới đây.

Phát biểu nào sau đây là đúng A. Hàm số đã cho đồng biến (ảnh 1)

Phát biểu nào sau đây là đúng?

A. Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) \(\left( {1; + \infty } \right)\).                          

B. Hàm số đã cho nghịch biến trên khoảng \(\left( { - 1;1} \right)\).  

C. Hàm số đã cho đồng biến trên khoảng \[\left( { - 1;\,1} \right)\].   

D. Hàm số đã cho nghịch biến trên khoảng \[\left( { - 3;\,1} \right)\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Từ đồ thị hàm số, ta thấy hàm số đã cho đồng biến trên khoảng \[\left( { - 1;\,1} \right)\]; nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) \(\left( {1; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ,           b) S,            c) S,            d) S.

Hướng dẫn giải

– Theo quy tắc ba điểm, ta có: \(\overrightarrow {SA} + \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {SB} + \overrightarrow {BC} = \overrightarrow {SC} \). Do đó, ý a) đúng.

– Ta có \(\left| {\overrightarrow {SA} } \right| = SA = 1;\,\,\left| {\overrightarrow {AB} } \right| = AB = 1;\,\,\left| {\overrightarrow {BC} } \right| = BC = \sqrt 2 \). Do đó, ý b) sai.

– Từ giả thiết, ta thấy tam giác \(ABC\) vuông tại \(A\) và tam giác \(SAB\) đều.

Do đó, \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 0\)\(\left( {\overrightarrow {SA} ,\,\overrightarrow {AB} } \right) = 180^\circ - \widehat {SAB} = 120^\circ \).

Ta có: \[\overrightarrow {SC} \cdot \overrightarrow {AB} = \left( {\overrightarrow {SA} + \overrightarrow {AC} } \right) \cdot \overrightarrow {AB} = \overrightarrow {SA} \cdot \overrightarrow {AB} + \overrightarrow {AC} \cdot \overrightarrow {AB} \]

\( = \overrightarrow {SA} \cdot \overrightarrow {AB} = \left| {\overrightarrow {SA} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos 120^\circ = - \frac{1}{2}\).

Do đó, ý c) sai.

– Ta có: \(\cos \left( {\overrightarrow {SC} ,\,\overrightarrow {AB} } \right) = \frac{{\overrightarrow {SC} \cdot \,\overrightarrow {AB} }}{{\left| {\overrightarrow {SC} } \right| \cdot \,\left| {\overrightarrow {AB} } \right|}} = \frac{{ - \frac{1}{2}}}{{1 \cdot 1}} = - \frac{1}{2}\). Vậy ý d) sai.

Lời giải

Gọi là tâm của đáy .

là hình chóp tứ giác đều nên , là trung điểm của .

Ta có: , suy ra .  

Hợp lực của bốn sợi xích là: 

.

Để đèn chùm đứng yên thì hợp lực của các sợi xích phải cân bằng với trọng lực , điều đó có nghĩa là , suy ra , hay .

Độ lớn của trọng lực tác động lên đèn chùm là: (N).

Do đó, .

Ta có: .

Vậy độ lớn của lực căng cho mỗi sợi xích bằng khoảng 8,5 N.

Đáp số: .

Câu 5

A. \(\left( {3; - 4;2} \right)\).
B. \(\left( { - 3; - 4;2} \right)\).
C. \(\left( { - 4;3;2} \right)\).
D. \(\left( {2; - 4;3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP