Câu hỏi:
04/10/2024 271
Chọn khẳng định sai. Với hai vectơ bất kì \(\overrightarrow a ,\,\overrightarrow b \) và hai số thực \(h,\,k\), ta có:
Chọn khẳng định sai. Với hai vectơ bất kì \(\overrightarrow a ,\,\overrightarrow b \) và hai số thực \(h,\,k\), ta có:
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Chân Trời Sáng Tạo có đáp án !!
Quảng cáo
Trả lời:
Đáp án đúng là: D
Với hai vectơ bất kì \(\overrightarrow a ,\,\overrightarrow b \) và hai số thực \(h,\,k\), ta có:
+) \(k\left( {\overrightarrow a + \overrightarrow b } \right) = k\overrightarrow a + k\overrightarrow b \); \(k\left( {\overrightarrow a - \overrightarrow b } \right) = k\overrightarrow a - k\overrightarrow b \);
+) \(\left( {h + k} \right)\overrightarrow a = h\overrightarrow a + k\overrightarrow a \);
+) \(h\left( {k\overrightarrow a } \right) = \left( {hk} \right)\overrightarrow a \).
Vậy khẳng định ở đáp án D sai.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi số tiền cần tăng giá mỗi chiếc khăn là \(x\) (nghìn đồng, \(x > 0\)).
Vì cứ tăng giá thêm \(1\,\) nghìn đồng thì số khăn bán ra mỗi tháng sẽ ít hơn \(100\) chiếc nên tăng \(x\) nghìn đồng thì số khăn bán ra giảm \(100x\) chiếc.
Do đó, tổng số khăn bán ra mỗi tháng là: \(3\,000 - 100x\) (chiếc).
Lúc đầu bán với giá \(30\) nghìn đồng, mỗi chiếc khăn có lãi \(12\) nghìn đồng. Sau khi tăng giá, mỗi chiếc khăn thu được số lãi là: \(12 + x\) (nghìn đồng).
Khi đó, lợi nhuận một tháng thu được sau khi tăng giá là:
\(L\left( x \right) = \left( {3\,000 - 100x} \right)\left( {12 + x} \right)\)\( = - 100{x^2} + 1\,800x + 36\,000\) (nghìn đồng).
Xét hàm số \(L\left( x \right) = - 100{x^2} + 1\,800x + 36\,000\) với \(x \in \left( {0; + \infty } \right)\).
Ta có: \(L'\left( x \right) = - 200x + 1\,800\). Trên khoảng \(\left( {0; + \infty } \right)\), \(L'\left( x \right) = 0 \Leftrightarrow x = 9\).
Bảng biến thiên của hàm số \(L\left( x \right)\) trên khoảng \(\left( {0; + \infty } \right)\) như sau:

Từ bảng biến thiên ta thấy: trên khoảng , hàm số đạt giá trị lớn nhất tại .
Như vậy, để thu được lợi nhuận cao nhất thì cơ sở sản xuất phải tăng giá bán mỗi chiếc khăn lên nghìn đồng, tức là giá bán mới của mỗi chiếc khăn là nghìn đồng.
Đáp số: .
Lời giải
a) Đ, b) S, c) S, d) S.
Hướng dẫn giải
– Theo quy tắc ba điểm, ta có: \(\overrightarrow {SA} + \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {SB} + \overrightarrow {BC} = \overrightarrow {SC} \). Do đó, ý a) đúng.
– Ta có \(\left| {\overrightarrow {SA} } \right| = SA = 1;\,\,\left| {\overrightarrow {AB} } \right| = AB = 1;\,\,\left| {\overrightarrow {BC} } \right| = BC = \sqrt 2 \). Do đó, ý b) sai.
– Từ giả thiết, ta thấy tam giác \(ABC\) vuông tại \(A\) và tam giác \(SAB\) đều.
Do đó, \(\overrightarrow {AB} \cdot \overrightarrow {AC} = 0\) và \(\left( {\overrightarrow {SA} ,\,\overrightarrow {AB} } \right) = 180^\circ - \widehat {SAB} = 120^\circ \).
Ta có: \[\overrightarrow {SC} \cdot \overrightarrow {AB} = \left( {\overrightarrow {SA} + \overrightarrow {AC} } \right) \cdot \overrightarrow {AB} = \overrightarrow {SA} \cdot \overrightarrow {AB} + \overrightarrow {AC} \cdot \overrightarrow {AB} \]
\( = \overrightarrow {SA} \cdot \overrightarrow {AB} = \left| {\overrightarrow {SA} } \right| \cdot \left| {\overrightarrow {AB} } \right| \cdot \cos 120^\circ = - \frac{1}{2}\).
Do đó, ý c) sai.
– Ta có: \(\cos \left( {\overrightarrow {SC} ,\,\overrightarrow {AB} } \right) = \frac{{\overrightarrow {SC} \cdot \,\overrightarrow {AB} }}{{\left| {\overrightarrow {SC} } \right| \cdot \,\left| {\overrightarrow {AB} } \right|}} = \frac{{ - \frac{1}{2}}}{{1 \cdot 1}} = - \frac{1}{2}\). Vậy ý d) sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.