Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \(\left[ { - 2;3} \right]\) có đồ thị như hình vẽ dưới đây:
Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 2;3} \right]\). Giá trị của \(2m - 3M\) bằng:
Cho hàm số \[y = f\left( x \right)\] liên tục trên đoạn \(\left[ { - 2;3} \right]\) có đồ thị như hình vẽ dưới đây:
Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số trên đoạn \(\left[ { - 2;3} \right]\). Giá trị của \(2m - 3M\) bằng:
Quảng cáo
Trả lời:
Đáp án đúng là: B
Quan sát đồ thị hàm số, ta có:
Giá trị lớn nhất của đồ thị hàm số trên đoạn \(\left[ { - 2;3} \right]\) là \(M = 4\) khi \(x = - 1\).
Giá trị nhỏ nhất của đồ thị hàm số trên đoạn \(\left[ { - 2;3} \right]\) là \(m = - 3\) khi \(x = - 2\).
Suy ra: \(2m - 3M\)= \(2.\left( { - 3} \right) - 3.4\) = \( - 18\).
Câu 9. Cho hàm số \[y = f\left( x \right)\] liên tục và có bảng biến thiên trên đoạnHot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét: \(h(t) = - \frac{1}{3}{t^3} + 5{t^2} + 24t\), \(\left( {t > 0} \right).\)
Ta có: \(h'(t) = - {t^2} + 10t + 24\)
\(h'(t) = 0 \Leftrightarrow - {t^2} + 10t + 24 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 12 \in \left( {0; + \infty } \right)\\t = - 2 \notin \left( {0; + \infty } \right)\end{array} \right.\)
Bảng biến thiên:
Để mực nước lên cao nhất thì phải mất 12 giờ.
Vậy phải thông báo cho dân dời đi vào 15 giờ chiều cùng ngày.
Câu 2
D. \(m = - 2\).
Lời giải
Đáp án đúng là: B
Ta có: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{2.1 + 1.3 + \left( { - 1} \right).m}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {3^2} + {m^2}} }}\).
Vì \(\left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \) nên \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 0\).
Suy ra \(2.1 + 1.3 + \left( { - 1} \right).m = 0\) hay \(m = 5\).
Câu 3
A. \(\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} = \overrightarrow 0 \) với \(O\) là điểm bất kì.
B. \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {DG} \).
D. \(\overrightarrow {GM} + \overrightarrow {GN} = \overrightarrow 0 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
D. \(y = - 1\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
D. \(72N\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
D. \(135^\circ \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.