Câu hỏi:

04/10/2024 103

Đồ thị hàm số \(y = \frac{{\sqrt {x + 4} - 2}}{{{x^2} + x}}\) có bao nhiêu đường tiệm cận?

Đáp án chính xác

Hot: Hot: 500+ Đề thi thử tốt nghiệp THPT Quốc gia Toán, Văn, Anh, Sử, Địa...., ĐGNL các trường ĐH Quốc Gia Hà Nội, Tp. Hồ Chi Minh file word có đáp án (form 2025).

Tải ngay

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có điều kiện xác định: \(D = \left[ { - 4; + \infty } \right)\backslash \left\{ {0; - 1} \right\}.\)

Xét: \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {x + 4} - 2}}{{{x^2} + x}} = 0\).

Do đó, đường thẳng \(y = 0\) là đường tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{\sqrt {x + 4} - 2}}{{{x^2} + x}} = + \infty .\)

\(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{\sqrt {x + 4} - 2}}{{{x^2} + x}} = - \infty .\)

Do đó, \(x = - 1\) là đường tiệm cận đứng của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {x + 4} - 2}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{x}{{x\left( {x + 1} \right)\left( {\sqrt {x + 4} + 2} \right)}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{\left( {x + 1} \right)\left( {\sqrt {x + 4} + 2} \right)}} = \frac{1}{4}\).

\(\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sqrt {x + 4} - 2}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{x}{{x\left( {x + 1} \right)\left( {\sqrt {x + 4} + 2} \right)}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{1}{{\left( {x + 1} \right)\left( {\sqrt {x + 4} + 2} \right)}} = \frac{1}{4}\).

Do đó, \(x = 0\) không là đường tiệm cận đứng của đồ thị hàm số.

Vậy đồ thị hàm số có 2 đường tiệm cận.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Hằng ngày mực nước của hồ thủy điện ở miền Trung lên và xuống theo lượng nước mưa và các suối nước đổ về hồ. Từ lúc 8 giờ sáng, độ sâu của mực nước trong hồ tính theo mét và lên xuống theo thời gian \(t\) (giờ) trong ngày cho bởi công thức:

\(h(t) = - \frac{1}{3}{t^3} + 5{t^2} + 24t\), \(\left( {t > 0} \right)\).

Biết rằng phải thông báo cho các hộ dân phải di dời đi trước khi xả nước theo quy định trước 5 giờ. Hỏi cần thông báo cho hộ dân di dời trước khi xả nước mấy giờ? Biết rằng mực nước trong hồ phải đi lên cao nhất mới xả nước.   (1,0 điểm)

Xem đáp án » 04/10/2024 61,025

Câu 2:

Trong không gian \[Oxyz\], cho hai vectơ \(\overrightarrow a = \left( {2;1; - 1} \right)\),\(\overrightarrow b = \left( {1;3;m} \right)\). Tìm \(m\) để \(\left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \).

Xem đáp án » 04/10/2024 12,105

Câu 3:

Cho tứ diện \(ABCD\). Gọi \(M,N\) lần lượt là trung điểm của \(AB,CD\)\(G\) là trung điểm \(MN\). Trong các khẳng định sau, khẳng định nào sai?

Xem đáp án » 04/10/2024 2,889

Câu 4:

Trong không gian với hệ tọa độ \[Oxyz\], cho hai điểm \(B(1;2 - 3)\), \(C(7;4; - 2)\). Nếu điểm \(E\) thỏa mãn đẳng thức \(\overrightarrow {CE} = 2\overrightarrow {EB} \) thì tọa độ điểm \(E\) là:

Xem đáp án » 04/10/2024 1,941

Câu 5:

Có ba lực cùng tác động vào một vật. Hai trong ba lực này hợp với nhau một góc \(100^\circ \) và có độ lớn lần lượt là \(25N\)\(12N\). Lực thứ ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn \(4N\). Tính độ lớn của hợp lực của ba lực trên (Làm tròn kết quả đến hàng đơn vị).

Xem đáp án » 04/10/2024 1,760

Câu 6:

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình vẽ:

Đồ thị hàm số đã cho có đường tiệm cận đứng  (ảnh 1)

Đồ thị hàm số đã cho có đường tiệm cận đứng là đường thẳng:

Xem đáp án » 04/10/2024 1,555

Câu 7:

Cho hàm số \(y = x - \sqrt {x - 1} \). Khẳng định nào sau đây là đúng?

Xem đáp án » 04/10/2024 743
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua