Câu hỏi:

09/10/2024 573

Cho hàm số .

a) Hàm số đã cho đồng biến trên mỗi khoảng .

b) Giá trị cực đại của hàm số đã cho là .

c) Đồ thị hàm số đã cho đi qua các điểm .

d) Đường thẳng cắt đồ thị hàm số đã cho tại 3 điểm phân biệt.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) Đ, b) S, c) S, d) S.

Hướng dẫn giải

Xét hàm số .

Tập xác định của hàm số là .

– Ta có ; khi hoặc .

Bảng biến thiên của hàm số như sau:

– Hàm số đồng biến trên mỗi khoảng ; nghịch biến trên khoảng . Do đó, ý a) đúng.

Hàm số đã cho đạt cực tiểu tại , ; đạt cực đại tại . Do đó, ý b) sai.

– Với thì ; với thì ; với thì .

Do đó, đồ thị hàm số đã cho đi qua các điểm .

Do đó, ý c) sai.

– Từ bảng biến thiên ta suy ra đường thẳng cắt đồ thị hàm số đã cho tại 2 điểm phân biệt. Do đó, ý d) sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) S, b) Đ, c) S, d) Đ.

Hướng dẫn giải

– Quan sát hình vẽ, ta thấy:

Hàm số đã cho có tập xác định là .

Trên các khoảng , đồ thị hàm số đi lên từ trái qua phải nên hàm số đã cho đồng biến trên mỗi khoảng này.  

Trên các khoảng , đồ thị hàm số đi xuống từ trái qua phải nên hàm số đã cho nghịch biến trên mỗi khoảng này.  

Vậy ý) a sai.

Hàm số đã cho đạt cực đại tại ; đạt cực tiểu tại , do đó ý b) đúng.

Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng , do đó ý c) sai.

– Vì là tiệm cận đứng nên . Khi đó, .

Ta có ; (*).

là một nghiệm của phương trình (*), do đó .

Các điểm , thuộc đồ thị hàm số đã cho nên tọa độ các điểm này thỏa mãn hàm số .

Khi đó, ta có hệ phương trình sau: .

Vậy công thức xác định hàm số đã cho là . Do đó, ý) d đúng.

Lời giải

Đáp án đúng là: D

Đồ thị hàm số đã cho nhận giao điểm của hai đường tiệm cận làm tâm đối xứng.

Giao điểm này có tọa độ là .

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP