Câu hỏi:
09/10/2024 573
Cho hàm số
.
a) Hàm số đã cho đồng biến trên mỗi khoảng
và
.
b) Giá trị cực đại của hàm số đã cho là
.
c) Đồ thị hàm số đã cho đi qua các điểm
.
d) Đường thẳng
cắt đồ thị hàm số đã cho tại 3 điểm phân biệt.
Cho hàm số .
a) Hàm số đã cho đồng biến trên mỗi khoảng và
.
b) Giá trị cực đại của hàm số đã cho là .
c) Đồ thị hàm số đã cho đi qua các điểm .
d) Đường thẳng cắt đồ thị hàm số đã cho tại 3 điểm phân biệt.
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Kết Nối Tri Thức có đáp án !!
Quảng cáo
Trả lời:
a) Đ, b) S, c) S, d) S.
Hướng dẫn giải
– Tập xác định của hàm số là .
– Ta có ;
khi
hoặc
.
Bảng biến thiên của hàm số như sau:
– Hàm số đồng biến trên mỗi khoảng và
; nghịch biến trên khoảng
. Do đó, ý a) đúng.
– Hàm số đã cho đạt cực tiểu tại ,
; đạt cực đại tại
. Do đó, ý b) sai.
– Với thì
; với
thì
; với
thì
.
Do đó, đồ thị hàm số đã cho đi qua các điểm .
Do đó, ý c) sai.
– Từ bảng biến thiên ta suy ra đường thẳng cắt đồ thị hàm số đã cho tại 2 điểm phân biệt. Do đó, ý d) sai.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) S, b) Đ, c) S, d) Đ.
Hướng dẫn giải
– Quan sát hình vẽ, ta thấy:
Hàm số đã cho có tập xác định là .
Trên các khoảng và
, đồ thị hàm số đi lên từ trái qua phải nên hàm số đã cho đồng biến trên mỗi khoảng này.
Trên các khoảng và
, đồ thị hàm số đi xuống từ trái qua phải nên hàm số đã cho nghịch biến trên mỗi khoảng này.
Vậy ý) a sai.
– Hàm số đã cho đạt cực đại tại ; đạt cực tiểu tại
, do đó ý b) đúng.
– Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng , do đó ý c) sai.
– Vì là tiệm cận đứng nên
. Khi đó,
.
Ta có ;
(*).
là một nghiệm của phương trình (*), do đó
.
Các điểm ,
thuộc đồ thị hàm số đã cho nên tọa độ các điểm này thỏa mãn hàm số
.
Khi đó, ta có hệ phương trình sau: .
Vậy công thức xác định hàm số đã cho là . Do đó, ý) d đúng.
Lời giải
Đáp án đúng là: D
Đồ thị hàm số đã cho nhận giao điểm của hai đường tiệm cận làm tâm đối xứng.
Giao điểm này có tọa độ là .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.