Câu hỏi:
09/10/2024 218Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Tập xác định của hàm số là \(\mathbb{R}\).
Ta có: \(y' = 3{x^2} - 6\left( {m + 1} \right)x + 3\left( {7m - 3} \right)\); \(y' = 0 \Leftrightarrow {x^2} - 2\left( {m + 1} \right)x + 7m - 3 = 0\).
Để hàm số đã cho không có cực trị thì \(\Delta ' \le 0 \Leftrightarrow {\left( {m + 1} \right)^2} - \left( {7m - 3} \right) \le 0\)
\( \Leftrightarrow {m^2} - 5m + 4 \le 0 \Leftrightarrow 1 \le m \le 4\).
Do \(m \in \mathbb{Z}\) nên \(S = \left\{ {1;\,2;\,3 & ;4} \right\}\). Vậy tập hợp \(S\) có 4 phần tử.
Đáp số: \(4\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Một tàu kéo một xà lan trên biển di chuyển được 5 km với một lực kéo có cường độ \(3\,000\) N và có phương hợp với phương dịch chuyển một góc \(30^\circ \). Công thực hiện bởi lực kéo nói trên bằng bao nhiêu Jun (làm tròn kết quả đến hàng đơn vị)?
Câu 3:
Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(1\).
a) \(\overrightarrow {BD} = \overrightarrow {B'D'} \).
b) \(\left| {\overrightarrow {A'C} } \right| = \left| {\overrightarrow {AC'} } \right| = \sqrt 3 \).
c) \(\overrightarrow {A'C} = \overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {D'D} \).
d) \(\overrightarrow {A'C} \cdot \overrightarrow {BD} = \sqrt 2 \).
Câu 4:
Một chất điểm \(A\) nằm trên mặt phẳng nằm ngang \(\left( \alpha \right)\), chịu tác động bởi ba lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \). Các lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) có giá nằm trong \(\left( \alpha \right)\) và \(\left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} } \right) = 135^\circ \), còn lực \(\overrightarrow {{F_3}} \) có giá vuông góc với \(\left( \alpha \right)\) và hướng lên trên. Độ lớn hợp lực của các lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \) bằng bao nhiêu (làm tròn kết quả đến hàng phần mười), biết rằng độ lớn của ba lực đó lần lượt là 20 N, 15 N và 10 N.
Câu 5:
Một nhà sản xuất muốn thiết kế một chiếc hộp có dạng hình hộp chữ nhật không có nắp, có đáy là hình vuông và diện tích bề mặt bằng \(108\) cm2 như hình dưới đây.
Biết khi \(x = {x_0},\,h = {h_0}\) thì thể tích của hộp là lớn nhất. Khi đó \({x_0} + {h_0}\) bằng bao nhiêu?
Câu 6:
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\) và có đồ thị như hình dưới đây.
a) Hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {1;2} \right)\).
b) Hàm số đã cho có \(2\) điểm cực trị.
c) Trên đoạn \(\left[ { - 1;\,1} \right]\), giá trị lớn nhất của hàm số đã cho bằng \(2\).
d) Phương trình \(3f\left( x \right) - 6 = 0\) có duy nhất 1 nghiệm.
Câu 7:
về câu hỏi!