Câu hỏi:

09/10/2024 382

Một nhà sản xuất muốn thiết kế một chiếc hộp có dạng hình hộp chữ nhật không có nắp, có đáy là hình vuông và diện tích bề mặt bằng \(108\) cm2 như hình dưới đây.

Biết khi \(x = {x_0},\,h = {h_0}\) thì thể tích của hộp là lớn nhất. Khi đó \({x_0} + {h_0}\) bằng bao nhiêu?

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hình hộp trên có độ dài cạnh đáy là \(x\) (cm, \(x > 0\)) và chiều cao là \(h\) (cm, \(h > 0\)).

Diện tích bề mặt của hình hộp là \(108\) cm2 nên \({x^2} + 4xh = 108\).

Suy ra \(h = \frac{{108 - {x^2}}}{{4x}}\) (cm).

Thể tích của hình hộp là: \(V = {x^2} \cdot h = {x^2} \cdot \frac{{108 - {x^2}}}{{4x}} = \frac{{108x - {x^3}}}{4}\) (cm3).

Xét hàm số \(V\left( x \right) = \frac{{108x - {x^3}}}{4}\) với \(x \in \left( {0; + \infty } \right)\).

Ta có: \(V'\left( x \right) = \frac{{ - 3{x^2} + 108}}{4}\). Trên khoảng \(\left( {0; + \infty } \right)\), \(V'\left( x \right) = 0 \Leftrightarrow x = 6\).

Bảng biến thiên của hàm số \(V\left( x \right)\) như sau:

Do đó, thể tích của hình hộp lớn nhất khi độ dài cạnh đáy là \(x = 6\) cm.

Khi đó, chiều cao của hình hộp là \(h = \frac{{108 - {6^2}}}{{4 \cdot 6}} = 3\) (cm).

Vậy \({x_0} = 6,{h_0} = 3\)\({x_0} + {h_0} = 9\).

Đáp số: \(9\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} - 3x + 6}}{{x + 2}}\) là đường thẳng:

Xem đáp án » 09/10/2024 592

Câu 2:

Một tàu kéo một xà lan trên biển di chuyển được 5 km với một lực kéo có cường độ \(3\,000\) N và có phương hợp với phương dịch chuyển một góc \(30^\circ \). Công thực hiện bởi lực kéo nói trên bằng bao nhiêu Jun (làm tròn kết quả đến hàng đơn vị)?

Xem đáp án » 09/10/2024 563

Câu 3:

Cho hình lập phương \(ABCD.A'B'C'D'\) có cạnh bằng \(1\).

a) \(\overrightarrow {BD}  = \overrightarrow {B'D'} \).

b) \(\left| {\overrightarrow {A'C} } \right| = \left| {\overrightarrow {AC'} } \right| = \sqrt 3 \).

c) \(\overrightarrow {A'C}  = \overrightarrow {AB}  + \overrightarrow {AD}  + \overrightarrow {D'D} \).

d) \(\overrightarrow {A'C}  \cdot \overrightarrow {BD}  = \sqrt 2 \).

Xem đáp án » 09/10/2024 456

Câu 4:

Một chất điểm \(A\) nằm trên mặt phẳng nằm ngang \(\left( \alpha  \right)\), chịu tác động bởi ba lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \). Các lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} \) có giá nằm trong \(\left( \alpha  \right)\)\(\left( {\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} } \right) = 135^\circ \), còn lực \(\overrightarrow {{F_3}} \) có giá vuông góc với \(\left( \alpha  \right)\) và hướng lên trên. Độ lớn hợp lực của các lực \(\overrightarrow {{F_1}} ,\,\overrightarrow {{F_2}} ,\,\overrightarrow {{F_3}} \) bằng bao nhiêu (làm tròn kết quả đến hàng phần mười), biết rằng độ lớn của ba lực đó lần lượt là 20 N, 15 N và 10 N.

Xem đáp án » 09/10/2024 406

Câu 5:

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = f\left( x \right)\) xác định trên \(\mathbb{R}\)có đồ thị như hình dưới đây.

a) Hàm số đã cho nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\)\(\left( {1;2} \right)\).

b) Hàm số đã cho có \(2\) điểm cực trị.

c) Trên đoạn \(\left[ { - 1;\,1} \right]\), giá trị lớn nhất của hàm số đã cho bằng \(2\).

d) Phương trình \(3f\left( x \right) - 6 = 0\) có duy nhất 1 nghiệm.

Xem đáp án » 09/10/2024 372

Câu 6:

Trong 18 giây đầu tiên, một chất điểm chuyển động theo phương trình \(s\left( t \right) =  - {t^3} + 18{t^2} + t + 3\), trong đó \(t\) tính bằng giây và \(s\) tính bằng mét. Chất điểm chuyển động có vận tốc tức thời lớn nhất bằng bao nhiêu mét trên giây trong 18 giây đầu tiên đó?

Xem đáp án » 09/10/2024 338

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn