Câu hỏi:

09/10/2024 2,916

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{{x^2} - 3x + 6}}{{x + 2}}\) là đường thẳng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 2} \right\}\).

Ta có: \(y = \frac{{{x^2} - 3x + 6}}{{x + 2}} = x - 5 + \frac{{16}}{{x + 2}}\).

\(\mathop {\lim }\limits_{x \to  + \infty } \left[ {y - \left( {x - 5} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{{16}}{{x + 2}} = 0\); \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {y - \left( {x - 5} \right)} \right] = \mathop {\lim }\limits_{x \to  - \infty } \frac{{16}}{{x + 2}} = 0\).

Vậy đường thẳng \(y = x - 5\) là tiệm cận xiên của đồ thị hàm số đã cho.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) S, b) S, c) Đ, d) Đ.

Hướng dẫn giải

Xét hàm số \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}} = x + 1 + \frac{1}{{x + 2}}\).

– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 2} \right\}\).

– Ta có \(y' = \frac{{{x^2} + 4x + 3}}{{{{\left( {x + 2} \right)}^2}}}\); \(y' = 0\) khi \(x =  - 3\) hoặc \(x =  - 1\).

Bảng biến thiên của hàm số như sau:

– Hàm số đã cho đồng biến trên từng khoảng \(\left( { - \infty ; - 3} \right)\)\(\left( { - 1; + \infty } \right)\). Do đó, ý a) sai.

– Hàm số đã cho đạt cực đại tại \(x =  - 3\), ; đạt cực tiểu tại \(x =  - 1\), \({y_{CT}} = 1\).

Suy ra . Do đó, ý b) sai.

– Tiệm cận:

+) Tiệm cận đứng của đồ thị hàm số đã cho là đường thẳng \(x =  - 2\).

+) Tiệm cận xiên của đồ thị hàm số đã cho là đường thẳng \(y = x + 1\).

Với \(x = 0\) thì \(y = 0 + 1 = 1\), do đó đường tiệm cận xiên của đồ thị hàm số đã cho đi qua điểm \(A\left( {0;1} \right)\). Vậy ý c) đúng.

– Đường thẳng \(x - 3y - 6 = 0\)\( \Leftrightarrow y = \frac{1}{3}x - 2\) có hệ số góc \({k_1} = \frac{1}{3}\). Đường thẳng này vuông góc với tiếp tuyến của đồ thị hàm số đã cho nên tiếp tuyến này có hệ số góc \({k_2} = \frac{{ - 1}}{{{k_1}}} =  - 3\).

Khi đó, với \({x_0}\) là hoành độ của tiếp điểm thì \(y'\left( {{x_0}} \right) = \frac{{x_0^2 + 4{x_0} + 2}}{{{{\left( {{x_0} + 2} \right)}^2}}} =  - 3\).

Ta tìm được \({x_0} =  - \frac{5}{2}\) hoặc \({x_0} =  - \frac{3}{2}\).

+) Với \({x_0} =  - \frac{5}{2}\), ta có tiếp tuyến: \(y =  - 3x - 11\).

+) Với \({x_0} =  - \frac{3}{2}\), ta có tiếp tuyến: \(y =  - 3x - 3\), tiếp tuyến này đi qua điểm \(B\left( { - \frac{3}{2};\frac{3}{2}} \right)\).

Do đó, ý d) đúng.

Lời giải

a) S, b) Đ, c) Đ, d) S.

Hướng dẫn giải

Quan sát đồ thị, ta thấy:

– Hàm số đã cho đồng biến trên các khoảng \(\left( { - \infty ;\,0} \right)\)\(\left( {2; + \infty } \right)\); nghịch biến trên khoảng \(\left( {0;2} \right)\). Vậy ý a) sai.

– Hàm số đã cho có \(2\) điểm cực trị: \(x = 0\) (điểm cực đại) và \(x = 2\) (điểm cực tiểu). Do đó, ý b) đúng.

 Trên đoạn \(\left[ { - 1;\,1} \right]\), hàm số đạt giá trị lớn nhất tại \(x = 0\), \(\mathop {\max }\limits_{\left[ { - 1;\,1} \right]} f\left( x \right) = f\left( 0 \right) = 2\). Do đó, ý c) đúng.

– Ta có \(3f\left( x \right) - 6 = 0\)\( \Leftrightarrow f\left( x \right) = 2\).

Đường thẳng \(y = 2\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 2 điểm nên phương trình \(f\left( x \right) = 2\)có 2 nghiệm, tức là phương trình \(3f\left( x \right) - 6 = 0\) có 2 nghiệm.

Vậy ý d) sai.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay