Câu hỏi:
09/10/2024 576
Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB\, = a\), \(AA' = a\sqrt 2 \).

a) \(\overrightarrow {AB'} = \overrightarrow {AB} + \overrightarrow {CC'} \).
b) \(\left| {\overrightarrow {AB'} } \right| = \left| {\overrightarrow {BC'} } \right| = \sqrt 3 \).
c) \(\overrightarrow {AB'} \cdot \overrightarrow {BC'} = \frac{{{a^2}}}{2}\).
d) \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = 60^\circ \).
Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB\, = a\), \(AA' = a\sqrt 2 \).
a) \(\overrightarrow {AB'} = \overrightarrow {AB} + \overrightarrow {CC'} \).
b) \(\left| {\overrightarrow {AB'} } \right| = \left| {\overrightarrow {BC'} } \right| = \sqrt 3 \).
c) \(\overrightarrow {AB'} \cdot \overrightarrow {BC'} = \frac{{{a^2}}}{2}\).
d) \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = 60^\circ \).
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Kết Nối Tri Thức có đáp án !!
Quảng cáo
Trả lời:
a) Đ, b) Đ, c) S, d) Đ.
Hướng dẫn giải
– Vì \(ABC.A'B'C'\) là lăng trụ tam giác đều nên \(\overrightarrow {CC'} = \overrightarrow {BB'} \).
Theo quy tắc ba điểm ta có: \(\overrightarrow {AB'} = \overrightarrow {AB} + \overrightarrow {BB'} = \overrightarrow {AB} + \overrightarrow {CC'} \). Vậy ý a) đúng.
– Ta có \(ABB'A',\,\,BCC'B'\) là các hình chữ nhật có hai kích thước là \(a\) và \(a\sqrt 2 \).
Do đó, \(AB' = BC' = \sqrt {{a^2} + {{\left( {a\sqrt 2 } \right)}^2}} = a\sqrt 3 \). Suy ra \(\left| {\overrightarrow {AB'} } \right| = \left| {\overrightarrow {BC'} } \right| = \sqrt 3 \).
Vậy ý b) đúng.
– Ta có \(\overrightarrow {AB'} \cdot \overrightarrow {BC'} = \left( {\overrightarrow {AB} + \overrightarrow {BB'} } \right) \cdot \left( {\overrightarrow {BC} + \overrightarrow {CC'} } \right)\)
\( = \overrightarrow {AB} \cdot \overrightarrow {BC} + \overrightarrow {AB} \cdot \overrightarrow {CC'} + \overrightarrow {BB'} \cdot \overrightarrow {BC} + \overrightarrow {BB'} \cdot \overrightarrow {CC'} \)
\( = - AB \cdot BC \cdot \cos \widehat {BAC} + 0 + 0 + B{B'^2}\)
\( = - a \cdot a \cdot \cos 60^\circ + {\left( {a\sqrt 2 } \right)^2}\)\( = \frac{{3{a^2}}}{2}\).
Suy ra \(\cos \left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = \frac{{\overrightarrow {AB'} \cdot \,\overrightarrow {BC'} }}{{\left| {\overrightarrow {AB'} } \right| \cdot \,\left| {\overrightarrow {BC'} } \right|}} = \frac{{\frac{{3{a^2}}}{2}}}{{a\sqrt 3 \cdot a\sqrt 3 }} = \frac{1}{2}\). Do đó, \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {BC'} } \right) = 60^\circ \).
Vậy ý c) sai và ý d) đúng.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: C
Ta có \(\overrightarrow {A'C'} = \overrightarrow {AC} \), suy ra \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AB'} ,\,\overrightarrow {AC} } \right) = \widehat {B'AC}\).
Lại có \(AC = AB' = CB' = a\sqrt 2 \cdot \sqrt 2 = 2a\) nên tam giác \(ACB'\) là tam giác đều, suy ra \(\widehat {B'AC} = 60^\circ \).
Vậy \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {A'C'} } \right) = 60^\circ \).
Lời giải
Đáp án đúng là: A
Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 1 \right\}\).
Ta có: \(y = \frac{{2{x^2} - x + 3}}{{2x + 1}} = x - 1 + \frac{4}{{2x + 1}}\).
\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{4}{{2x + 1}} = 0\); \(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{4}{{2x + 1}} = 0\).
Vậy đường thẳng \(y = x - 1\) là tiệm cận xiên của đồ thị hàm số đã cho.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.