Câu hỏi:

09/10/2024 4,451

Tiệm cận xiên của đồ thị hàm số \(y = \frac{{2{x^2} - x + 3}}{{2x + 1}}\) là đường thẳng:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 1 \right\}\).

Ta có: \(y = \frac{{2{x^2} - x + 3}}{{2x + 1}} = x - 1 + \frac{4}{{2x + 1}}\).

\(\mathop {\lim }\limits_{x \to  + \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{4}{{2x + 1}} = 0\); \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to  - \infty } \frac{4}{{2x + 1}} = 0\).

Vậy đường thẳng \(y = x - 1\) là tiệm cận xiên của đồ thị hàm số đã cho.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có \(\overrightarrow {A'C'}  = \overrightarrow {AC} \), suy ra \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AB'} ,\,\overrightarrow {AC} } \right) = \widehat {B'AC}\).

Lại có \(AC = AB' = CB' = a\sqrt 2  \cdot \sqrt 2  = 2a\) nên tam giác \(ACB'\) là tam giác đều, suy ra \(\widehat {B'AC} = 60^\circ \).

Vậy \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {A'C'} } \right) = 60^\circ \).

Lời giải

Tại thời điểm \[t\] (giờ) sau khi xuất phát, khoảng cách giữa hai tàu là \[d\]. Khi đó, tàu \[A\] đang ở vị trí \({A_1}\) và tàu \(B\) đang ở vị trí \({B_1}\) như hình vẽ trên.

Ta có: \({d^2} = AB_1^2 + AA_1^2 = {\left( {5 - B{B_1}} \right)^2} + AA_1^2 = {\left( {5 - 7t} \right)^2} + {\left( {6t} \right)^2}\).

Suy ra \(d = \sqrt {85{t^2} - 70t + 25} \).

Xét hàm số \(f\left( t \right) = \sqrt {85{t^2} - 70t + 25} \) với \(t > 0\).

Ta có \(f'\left( t \right) = \frac{{170t - 70}}{{2\sqrt {85{t^2} - 70t + 25} }};\,\,f'\left( t \right) = 0 \Leftrightarrow t = \frac{7}{{17}}\).

Bảng biến thiên của hàm số \(f\left( t \right)\) trên khoảng \(\left( {0; + \infty } \right)\) như sau:

Từ bảng biến thiên, ta có: \(\mathop {\min }\limits_{\left( {0; + \infty } \right)} f\left( t \right) = \frac{{6\sqrt {85} }}{{17}}\) tại \(t = \frac{7}{{17}}\).

Vậy sau \(\frac{7}{{17}} \approx 0,4\) giờ thì khoảng cách giữa hai tàu là bé nhất.

Đáp số: \(0,4\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hình hộp \(ABCD.A'B'C'D'\). Vectơ \(\overrightarrow v  = \overrightarrow {B'A'}  + \overrightarrow {B'C'}  + \overrightarrow {B'B} \) bằng vectơ nào dưới đây?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay