Câu hỏi:

19/08/2025 1,538 Lưu

Một chất điểm chuyển động theo phương trình \(s = f\left( t \right) = 0,5\cos \left( {2\pi t} \right)\), trong đó \(s\) tính bằng mét, \(t\) tính bằng giây. Gia tốc lớn nhất của chất điểm bằng bao nhiêu mét trên giây (làm tròn kết quả đến hàng phần mười)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vận tốc tức thời của chất điểm là \(v = s' =  - \pi \sin \left( {2\pi t} \right)\).

Gia tốc tức thời của chất điểm là \(a = v' =  - 2{\pi ^2}\cos \left( {2\pi t} \right)\).

Ta có: \( - 1 \le \cos \left( {2\pi t} \right) \le 1\)\( \Leftrightarrow  - 2{\pi ^2} \le  - 2{\pi ^2}\cos \left( {2\pi t} \right) \le 2{\pi ^2}\) với mọi \(t\).

Tức là \( - 2{\pi ^2} \le a \le 2{\pi ^2}\). Vậy \({a_{\max }} = 2{\pi ^2} \approx 19,7\) với \(\cos \left( {2\pi t} \right) =  - 1 \Rightarrow t = \frac{1}{2} + k,\,k \in \mathbb{Z}\).

Vậy gia tốc lớn nhất của chất điểm bằng khoảng \(19,7\) m/s2.

Đáp số: \(19,7\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có \(\overrightarrow {A'C'}  = \overrightarrow {AC} \), suy ra \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {A'C'} } \right) = \left( {\overrightarrow {AB'} ,\,\overrightarrow {AC} } \right) = \widehat {B'AC}\).

Lại có \(AC = AB' = CB' = a\sqrt 2  \cdot \sqrt 2  = 2a\) nên tam giác \(ACB'\) là tam giác đều, suy ra \(\widehat {B'AC} = 60^\circ \).

Vậy \(\left( {\overrightarrow {AB'} ,\,\overrightarrow {A'C'} } \right) = 60^\circ \).

Câu 2

Lời giải

Đáp án đúng là: A

Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ 1 \right\}\).

Ta có: \(y = \frac{{2{x^2} - x + 3}}{{2x + 1}} = x - 1 + \frac{4}{{2x + 1}}\).

\(\mathop {\lim }\limits_{x \to  + \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to  + \infty } \frac{4}{{2x + 1}} = 0\); \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to  - \infty } \frac{4}{{2x + 1}} = 0\).

Vậy đường thẳng \(y = x - 1\) là tiệm cận xiên của đồ thị hàm số đã cho.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP