Câu hỏi:

09/10/2024 135

Tập hợp tất cả các giá trị thực của tham số \(m\) để hàm số \(y = {x^3} - 3{x^2} + \left( {4 - m} \right)x\) đồng biến trên khoảng \(\left( {2; + \infty } \right)\) là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có: \(y = {x^3} - 3{x^2} + \left( {4 - m} \right)x\); \(y' = 3{x^2} - 6x + 4 - m\).

Để thỏa mãn yêu cầu bài toán thì \(y' \ge 0,\forall x \in \left( {2; + \infty } \right)\).

\( \Leftrightarrow 3{x^2} - 6x + 4 - m \ge 0,\forall x \in \left( {2; + \infty } \right).\)

\( \Leftrightarrow m \le 3{x^2} - 6x + 4,\forall x \in \left( {2; + \infty } \right).\)

\( \Leftrightarrow m \le \mathop {\min }\limits_{\left( {2; + \infty } \right)} g(x)\) với \(g(x) = 3{x^2} - 6x + 4.\)

Ta có: \(g'\left( x \right) = 6x - 6\)

\(g'\left( x \right) = 0 \Leftrightarrow 6x - 6 = 0 \Leftrightarrow x = 1\).

Ta có bảng biến thiên:

Dựa vào bảng biến thiên, suy ra \(m \le 4\) thỏa mãn yêu cầu bài toán.

Vậy \(m \in \left( { - \infty ;4} \right]\) thì hàm số đã cho đồng biến trên khoảng \(\left( {2; + \infty } \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét: \(h(t) =  - \frac{1}{3}{t^3} + 5{t^2} + 24t\), \(\left( {t > 0} \right).\)

Ta có: \(h'(t) =  - {t^2} + 10t + 24\)

\(h'(t) = 0 \Leftrightarrow  - {t^2} + 10t + 24 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 12 \in \left( {0; + \infty } \right)\\t =  - 2 \notin \left( {0; + \infty } \right)\end{array} \right.\)

Bảng biến thiên:

Để mực nước lên cao nhất thì phải mất 12 giờ.

Vậy phải thông báo cho dân dời đi vào 15 giờ chiều cùng ngày.

Lời giải

Đáp án đúng là: B

Ta có: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{2.1 + 1.3 + \left( { - 1} \right).m}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {3^2} + {m^2}} }}\).

\(\left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \) nên \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 0\).

Suy ra \(2.1 + 1.3 + \left( { - 1} \right).m = 0\) hay \(m = 5\).

Câu 4

Cho hàm số \(y = \frac{{x - 2}}{{x + 2}}\) có đồ thị \[\left( C \right)\]. Tìm tọa độ giao điểm \(I\) của hai đường tiệm cận của đồ thị \[\left( C \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong không gian với hệ trục tọa độ \[Oxyz\], điểm thuộc trục \(Ox\)và cách đều hai điểm \(A\left( {4;2; - 1} \right)\)\(B\left( {2;1;0} \right)\) là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Trong không gian với hệ tọa độ \[Oxyz\], cho hai điểm \(B(1;2 - 3)\), \(C(7;4; - 2)\). Nếu điểm \(E\) thỏa mãn đẳng thức \(\overrightarrow {CE}  = 2\overrightarrow {EB} \) thì tọa độ điểm \(E\) là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP