Câu hỏi:

09/10/2024 258

Đồ thị hàm số \(y = \frac{{\sqrt {x + 4}  - 2}}{{{x^2} + x}}\) có bao nhiêu đường tiệm cận?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Ta có điều kiện xác định: \(D = \left[ { - 4; + \infty } \right)\backslash \left\{ {0; - 1} \right\}.\)

Xét: \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {x + 4}  - 2}}{{{x^2} + x}} = 0\).

Do đó, đường thẳng \(y = 0\) là đường tiệm cận ngang của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to  - {1^ + }} y = \mathop {\lim }\limits_{x \to  - {1^ + }} \frac{{\sqrt {x + 4}  - 2}}{{{x^2} + x}} =  + \infty .\)

\(\mathop {\lim }\limits_{x \to  - {1^ - }} y = \mathop {\lim }\limits_{x \to  - {1^ - }} \frac{{\sqrt {x + 4}  - 2}}{{{x^2} + x}} =  - \infty .\)

Do đó, \(x =  - 1\) là đường tiệm cận đứng của đồ thị hàm số.

\(\mathop {\lim }\limits_{x \to {0^ + }} y = \mathop {\lim }\limits_{x \to {0^ + }} \frac{{\sqrt {x + 4}  - 2}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{x}{{x\left( {x + 1} \right)\left( {\sqrt {x + 4}  + 2} \right)}} = \mathop {\lim }\limits_{x \to {0^ + }} \frac{1}{{\left( {x + 1} \right)\left( {\sqrt {x + 4}  + 2} \right)}} = \frac{1}{4}\).

\(\mathop {\lim }\limits_{x \to {0^ - }} y = \mathop {\lim }\limits_{x \to {0^ - }} \frac{{\sqrt {x + 4}  - 2}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{x}{{x\left( {x + 1} \right)\left( {\sqrt {x + 4}  + 2} \right)}} = \mathop {\lim }\limits_{x \to {0^ - }} \frac{1}{{\left( {x + 1} \right)\left( {\sqrt {x + 4}  + 2} \right)}} = \frac{1}{4}\).

Do đó, \(x = 0\) không là đường tiệm cận đứng của đồ thị hàm số.

Vậy đồ thị hàm số có 2 đường tiệm cận.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét: \(h(t) =  - \frac{1}{3}{t^3} + 5{t^2} + 24t\), \(\left( {t > 0} \right).\)

Ta có: \(h'(t) =  - {t^2} + 10t + 24\)

\(h'(t) = 0 \Leftrightarrow  - {t^2} + 10t + 24 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 12 \in \left( {0; + \infty } \right)\\t =  - 2 \notin \left( {0; + \infty } \right)\end{array} \right.\)

Bảng biến thiên:

Để mực nước lên cao nhất thì phải mất 12 giờ.

Vậy phải thông báo cho dân dời đi vào 15 giờ chiều cùng ngày.

Lời giải

Đáp án đúng là: B

Ta có: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{2.1 + 1.3 + \left( { - 1} \right).m}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {3^2} + {m^2}} }}\).

\(\left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \) nên \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 0\).

Suy ra \(2.1 + 1.3 + \left( { - 1} \right).m = 0\) hay \(m = 5\).

Câu 4

Cho hàm số \(y = \frac{{x - 2}}{{x + 2}}\) có đồ thị \[\left( C \right)\]. Tìm tọa độ giao điểm \(I\) của hai đường tiệm cận của đồ thị \[\left( C \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Trong không gian với hệ trục tọa độ \[Oxyz\], điểm thuộc trục \(Ox\)và cách đều hai điểm \(A\left( {4;2; - 1} \right)\)\(B\left( {2;1;0} \right)\) là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Trong không gian với hệ tọa độ \[Oxyz\], cho hai điểm \(B(1;2 - 3)\), \(C(7;4; - 2)\). Nếu điểm \(E\) thỏa mãn đẳng thức \(\overrightarrow {CE}  = 2\overrightarrow {EB} \) thì tọa độ điểm \(E\) là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP