Câu hỏi:

09/10/2024 285 Lưu

Cho tứ diện \(ABCD\). Gọi \(M,N\) lần lượt là trung điểm của \(AB,CD\)\(G\) là trung điểm \(MN\). Trong các khẳng định sau, khẳng định nào sai?

A. \(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow 0 \) với \(O\) là điểm bất kì.

B. \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow {DG} \).

C. \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \).

D. \(\overrightarrow {GM}  + \overrightarrow {GN}  = \overrightarrow 0 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

\(M,N,G\) lần lượt là trung điểm \(AB,CD,MN\). Theo quy tắc trung điểm, ta có:

\(\overrightarrow {GA}  + \overrightarrow {GB}  = 2\overrightarrow {GM} \); \(\overrightarrow {GC}  + \overrightarrow {GD}  = 2\overrightarrow {GN} \); \(\overrightarrow {GM}  + \overrightarrow {GN}  = \overrightarrow 0 \).

Suy ra \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \) hay \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  = \overrightarrow {DG} \).

Với \(O\) là điểm bất kì, ta có:

\(\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  + \overrightarrow {OD}  = \overrightarrow {OG}  + \overrightarrow {GA}  + \overrightarrow {OG}  + \overrightarrow {GB}  + \overrightarrow {OG}  + \overrightarrow {GC}  + \overrightarrow {OG}  + \overrightarrow {GD} \)

                                  \( = 4\overrightarrow {OG}  + \overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD} \)\( = 4\overrightarrow {OG} \).

Vậy đáp án A sai và các đáp án B, C, D đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Xét: \(h(t) =  - \frac{1}{3}{t^3} + 5{t^2} + 24t\), \(\left( {t > 0} \right).\)

Ta có: \(h'(t) =  - {t^2} + 10t + 24\)

\(h'(t) = 0 \Leftrightarrow  - {t^2} + 10t + 24 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 12 \in \left( {0; + \infty } \right)\\t =  - 2 \notin \left( {0; + \infty } \right)\end{array} \right.\)

Bảng biến thiên:

Để mực nước lên cao nhất thì phải mất 12 giờ.

Vậy phải thông báo cho dân dời đi vào 15 giờ chiều cùng ngày.

Lời giải

Đáp án đúng là: A

Gọi \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) là ba lực tác động vào vật tại điểm \(O\) lần lượt có độ lớn \(25N,12N,4N\).

Vẽ \(\overrightarrow {OA}  = \overrightarrow {{F_1}} ,\overrightarrow {OB}  = \overrightarrow {{F_2}} ,\overrightarrow {OC}  = \overrightarrow {{F_3}} \).

Dựng hình bình hành \(OADB\) và hình bình hành \(ODEC\).

Hợp lực tác động vào vật là:

\(\overrightarrow F  = \overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC}  = \overrightarrow {OD}  + \overrightarrow {OC}  = \overrightarrow {OE} .\)

Áp dụng định lí côsin trong tam giác \(OBD\), ta có:

\(O{D^2} = B{D^2} + O{B^2} - 2.BD.OB.\cos \widehat {OBD} = O{A^2} + O{B^2} + 2.OA.OB.\cos 100^\circ \)

\(OC \bot \left( {OADB} \right)\) nên \(OC \bot OD\), suy ra \(ODEC\) là hình chữ nhật.

Do đó, tam giác \(DOE\) vuông tại \(D\).

Ta có: \(O{E^2} = O{C^2} + O{D^2} = O{C^2} + O{A^2} + O{B^2} + 2.OA.OB.\cos 100^\circ \).

Suy ra:

\(OE = \sqrt {O{C^2} + O{A^2} + O{B^2} + 2.OA.OB.\cos 100^\circ } \)\( = \sqrt {{4^2} + {{25}^2} + {{12}^2} + 2.25.12.\cos 100^\circ } \)

\(OE \approx 26N\).

Vậy độ lớn của hợp lực \(F = OE \approx 26N\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hàm số \(y = \frac{{x - 2}}{{x + 2}}\) có đồ thị \[\left( C \right)\]. Tìm tọa độ giao điểm \(I\) của hai đường tiệm cận của đồ thị \[\left( C \right)\].

A. \(I\left( { - 2;2} \right)\).
B. \(I\left( { - 2; - 2} \right)\).
C. \(I\left( {2;1} \right)\).
D. \(I\left( { - 2;1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(M\left( { - 4;0;0} \right)\).
B. \(M\left( {4;0;0} \right)\).
C. \(M\left( {5;0;0} \right)\).
D. \(M\left( { - 5;0;0} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A.\(\left( {3;\frac{8}{3}; - \frac{8}{3}} \right)\).
B.\(\left( {\frac{8}{3};3; - \frac{8}{3}} \right)\).
C.\(\left( {3;3; - \frac{8}{3}} \right)\).
D.\(\left( {1;2;\frac{1}{3}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP