Trong không gian \[Oxyz\], cho hai điểm \(A\left( {1;2;1} \right)\), \(B\left( {2; - 1;3} \right)\). Tìm điểm \(M\) trên mặt phẳng \[\left( {Oxy} \right)\] sao cho \[M{A^2}--2M{B^2}\] lớn nhất.
Quảng cáo
Trả lời:
Đáp án đúng là: A
Gọi \(I\left( {x;y;z} \right)\) là điểm thỏa mãn \(\overrightarrow {IA} = 2\overrightarrow {IB} \) \( \Leftrightarrow \left\{ \begin{array}{l}1 - x = 2\left( {2 - x} \right)\\2 - y = 2\left( { - 1 - y} \right)\\1 - z = 2\left( {3 - z} \right).\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = 3\\y = - 4\\z = 5\end{array} \right. \Rightarrow I\left( {3; - 4;5} \right)\).
Khi đó, ta có: \(M{A^2} - 2M{B^2} = {\left( {\overrightarrow {MI} + \overrightarrow {IA} } \right)^2} - 2{\left( {\overrightarrow {MI} + \overrightarrow {IB} } \right)^2} = - M{I^2} + 2\overrightarrow {MI} .\left( {\overrightarrow {IA} - 2\overrightarrow {IB} } \right) + I{A^2} - 2I{B^2}\)
\( = - M{I^2} + I{A^2} - 2I{B^2}\).
Để \[M{A^2}--2M{B^2}\] lớn nhất thì \( - M{I^2} + I{A^2} - 2I{B^2}\) lớn nhất \( \Leftrightarrow MI\) nhỏ nhất \( \Leftrightarrow M\) là hình chiếu của \(I\) trên mặt phẳng \(\left( {Oxy} \right)\).
Suy ra \(M\left( {3; - 4;0} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét: \(h(t) = - \frac{1}{3}{t^3} + 5{t^2} + 24t\), \(\left( {t > 0} \right).\)
Ta có: \(h'(t) = - {t^2} + 10t + 24\)
\(h'(t) = 0 \Leftrightarrow - {t^2} + 10t + 24 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 12 \in \left( {0; + \infty } \right)\\t = - 2 \notin \left( {0; + \infty } \right)\end{array} \right.\)
Bảng biến thiên:

Để mực nước lên cao nhất thì phải mất 12 giờ.
Vậy phải thông báo cho dân dời đi vào 15 giờ chiều cùng ngày.
Câu 2
Lời giải
Đáp án đúng là: A

Gọi \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \) là ba lực tác động vào vật tại điểm \(O\) lần lượt có độ lớn \(25N,12N,4N\).
Vẽ \(\overrightarrow {OA} = \overrightarrow {{F_1}} ,\overrightarrow {OB} = \overrightarrow {{F_2}} ,\overrightarrow {OC} = \overrightarrow {{F_3}} \).
Dựng hình bình hành \(OADB\) và hình bình hành \(ODEC\).
Hợp lực tác động vào vật là:
\(\overrightarrow F = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} = \overrightarrow {OD} + \overrightarrow {OC} = \overrightarrow {OE} .\)
Áp dụng định lí côsin trong tam giác \(OBD\), ta có:
\(O{D^2} = B{D^2} + O{B^2} - 2.BD.OB.\cos \widehat {OBD} = O{A^2} + O{B^2} + 2.OA.OB.\cos 100^\circ \)
Vì \(OC \bot \left( {OADB} \right)\) nên \(OC \bot OD\), suy ra \(ODEC\) là hình chữ nhật.
Do đó, tam giác \(DOE\) vuông tại \(D\).
Ta có: \(O{E^2} = O{C^2} + O{D^2} = O{C^2} + O{A^2} + O{B^2} + 2.OA.OB.\cos 100^\circ \).
Suy ra:
\(OE = \sqrt {O{C^2} + O{A^2} + O{B^2} + 2.OA.OB.\cos 100^\circ } \)\( = \sqrt {{4^2} + {{25}^2} + {{12}^2} + 2.25.12.\cos 100^\circ } \)
\(OE \approx 26N\).
Vậy độ lớn của hợp lực \(F = OE \approx 26N\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
