Câu hỏi:
09/10/2024 145
Trong không gian \[Oxyz\], cho hai vectơ \(\overrightarrow a = \left( { - 2;1;2} \right)\), \(\overrightarrow b = \left( {1;1; - 1} \right)\).
a) Xác định tọa độ của \(\overrightarrow u = \overrightarrow a - 2\overrightarrow b \). (0,25 điểm)
b) Tính độ dài của \(\overrightarrow u \). (0,25 điểm)
c) Tính \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\). (0,5 điểm)
Trong không gian \[Oxyz\], cho hai vectơ \(\overrightarrow a = \left( { - 2;1;2} \right)\), \(\overrightarrow b = \left( {1;1; - 1} \right)\).
a) Xác định tọa độ của \(\overrightarrow u = \overrightarrow a - 2\overrightarrow b \). (0,25 điểm)
b) Tính độ dài của \(\overrightarrow u \). (0,25 điểm)
c) Tính \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right)\). (0,5 điểm)
Câu hỏi trong đề: Đề thi giữa kì 1 Toán 12 Kết Nối Tri Thức có đáp án !!
Quảng cáo
Trả lời:
a) Ta có: \(2\overrightarrow b = \left( {2;2; - 2} \right)\).
Do đó, \(\overrightarrow a - 2\overrightarrow b = \left( { - 2 - 2;1 - 2;2 - \left( { - 2} \right)} \right) = \left( { - 4; - 1;4} \right)\).
Vậy \(\overrightarrow u = \left( { - 4; - 1;4} \right)\).
b) Ta có: \(\left| {\overrightarrow u } \right| = \sqrt {{{\left( { - 4} \right)}^2} + {{\left( { - 1} \right)}^2} + {4^2}} = \sqrt {33} \).
Vậy độ dài vectơ \(\overrightarrow u \) là \(\sqrt {33} \).
c) Ta có: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{ - 2.1 + 1.1 + 2.\left( { - 1} \right)}}{{\sqrt {{{\left( { - 2} \right)}^2} + {1^2} + {2^2}} .\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} = \frac{{ - \sqrt 3 }}{3}\).
Vậy \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{ - \sqrt 3 }}{3}\).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Xét: \(h(t) = - \frac{1}{3}{t^3} + 5{t^2} + 24t\), \(\left( {t > 0} \right).\)
Ta có: \(h'(t) = - {t^2} + 10t + 24\)
\(h'(t) = 0 \Leftrightarrow - {t^2} + 10t + 24 = 0 \Leftrightarrow \left[ \begin{array}{l}t = 12 \in \left( {0; + \infty } \right)\\t = - 2 \notin \left( {0; + \infty } \right)\end{array} \right.\)
Bảng biến thiên:
Để mực nước lên cao nhất thì phải mất 12 giờ.
Vậy phải thông báo cho dân dời đi vào 15 giờ chiều cùng ngày.
Lời giải
Đáp án đúng là: B
Ta có: \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } \right|.\left| {\overrightarrow b } \right|}} = \frac{{2.1 + 1.3 + \left( { - 1} \right).m}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{1^2} + {3^2} + {m^2}} }}\).
Vì \(\left( {\overrightarrow a ,\overrightarrow b } \right) = 90^\circ \) nên \(\cos \left( {\overrightarrow a ,\overrightarrow b } \right) = 0\).
Suy ra \(2.1 + 1.3 + \left( { - 1} \right).m = 0\) hay \(m = 5\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.