Câu hỏi:

10/10/2024 1,675

Một doanh nghiệp tư nhân A chuyên kinh doanh xe gắn máy các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh xe Honda Future Fi với chi phí mua vào một chiếc là 27 triệu đồng và bán ra với giá 31 triệu đồng. Với giá bán này thì số lượng xe mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng xe đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc xe thì số lượng xe bán ra trong một năm sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu triệu đồng để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất. 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi \(x\) (triệu đồng) là số tiền mà doanh nghiệp A dự định giảm giá \(\left( {0 \le x \le 4} \right)\).

Lợi nhuận thu được khi bán một chiếc xe là \(31 - x - 27 = 4 - x\) (triệu đồng).

Số xe mà doanh nghiệp sẽ bán được trong một năm là \(600 + 200x\) (chiếc).

Lợi nhuận mà doanh nghiệp thu được trong một năm là:

\(L\left( x \right) = \left( {4 - x} \right)\left( {600 + 200x} \right) =  - 200{x^2} + 200x + 2\,400\) (triệu đồng).

Xét hàm số \(L\left( x \right) =  - 200{x^2} + 200x + 2\,400\) trên đoạn \(\left[ {0;\,4} \right]\).

Ta có \(L'\left( x \right) =  - 400x + 200\). Trên khoảng \(\left( {0;\,4} \right)\), \(L'\left( x \right) = 0 \Leftrightarrow x = \frac{1}{2}\).

\(L\left( 0 \right) = \,2\,400;\,\,L\left( {\frac{1}{2}} \right) = 2\,450;\,\,L\left( 4 \right) = 0\).

Suy ra \(\mathop {\max }\limits_{\left[ {0;\,4} \right]} L\left( x \right) = 2\,450\) tại \(x = \frac{1}{2}\).

Vậy cần giảm giá mỗi chiếc xe \(\frac{1}{2} = 0,5\) triệu đồng, tức là giá bán mới của mỗi chiếc xe là 30,5 triệu đồng thì lợi nhuận thu được sẽ là cao nhất.

Đáp số: \(30,5\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) Đ, d) Đ.

Hướng dẫn giải

Xét hàm số \(y = f\left( x \right) = \frac{{{x^2} + 4x + 7}}{{x + 1}} = x + 3 + \frac{4}{{x + 1}}\).

– Tập xác định của hàm số là \(\mathbb{R}\backslash \left\{ { - 1} \right\}\).

– Ta có \(y' = \frac{{{x^2} + 2x - 3}}{{{{\left( {x + 1} \right)}^2}}}\); \(y' = 0\) khi \(x =  - 3\) hoặc \(x = 1\).

Bảng biến thiên của hàm số:

– Hàm số đồng biến trên từng khoảng \(\left( { - \infty ; - 3} \right)\)\(\left( {1; + \infty } \right)\); nghịch biến trên từng khoảng \(\left( { - 3; - 1} \right)\)\(\left( { - 1;1} \right)\). Do đó, ý a) đúng.

– Hàm số đã cho đạt cực tiểu tại \(x = 1\), \({y_{CT}} = 6\); đạt cực đại tại . Do đó, ý b) sai.

– Tiệm cận: Đồ thị hàm số đã cho có tiệm cận đứng là đường thẳng \(x =  - 1\), tiệm cận xiên là đường thẳng \(y = x + 3\). Do đó, ý c) đúng.

– Giả sử đồ thị hàm số \(y = f\left( x \right)\)\(\left( C \right)\).

Điểm \(M\left( {x;\,y} \right) \in \left( C \right)\) có tọa độ nguyên khi \(\left\{ \begin{array}{l}x \in \mathbb{Z}\backslash \left\{ { - 1} \right\}\\y \in \mathbb{Z}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \in \mathbb{Z}\backslash \left\{ { - 1} \right\}\\4\,\, \vdots \,\,\left( {x + 1} \right)\end{array} \right.\).

Vì Ư(4) = \[\left\{ { \pm 1;\, \pm 2;\, \pm 4} \right\}\] nên ta có bảng sau:

\(x + 1\)

\( - 4\)

\( - 2\)

\( - 1\)

\(1\)

\(2\)

\(4\)

\(x\)

\( - 5\) (tm)

\( - 3\) (tm)

\( - 2\) (tm)

\(0\) (tm)

\(1\) (tm)

\(3\) (tm)

 

Vậy đồ thị hàm số \(y = f\left( x \right)\) đi qua 6 điểm có tọa độ nguyên nên ý d) đúng.

Câu 2

Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình dưới đây.

Tâm đối xứng của đồ thị hàm số có tọa độ là

Lời giải

Đáp án đúng là: A

Đồ thị hàm số đã cho nhận giao điểm của hai đường tiệm cận làm tâm đối xứng.

Dựa vào đồ thị, ta thấy, giao điểm này có tọa độ là \(\left( {2;\,2} \right)\).

Câu 3

Tiệm cận xiên của đồ thị hàm số \(y = x + 4 - \frac{{10}}{{x + 2}}\) là đường thẳng

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho hàm số \[y = f\left( x \right)\] có đồ thị như hình dưới đây.

Phát biểu nào sau đây là đúng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay