Câu hỏi:

11/10/2024 220

II. Thông hiểu

Cho tam giác \[ABC\] vuông tại \[A\] có \[AB = 6{\rm{\;cm}},\,\,AC = 8{\rm{\;cm}}.\] Khẳng định nào sau đây sai?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: D

Áp dụng định lí Pythagore cho tam giác \[ABC\] vuông tại \[A\], ta được:

\[B{C^2} = A{B^2} + A{C^2} = {6^2} + {8^2} = 100.\] Suy ra \[AB = 10{\rm{\;cm}}.\]

Vì tam giác \[ABC\] vuông tại \[A\] nên:

⦁ \[\sin C = \frac{{AB}}{{BC}} = \frac{6}{{10}} = \frac{3}{5}.\] Do đó phương án A là khẳng định đúng.

⦁ \[\cos C = \frac{{AC}}{{BC}} = \frac{8}{{10}} = \frac{4}{5}.\] Do đó phương án B là khẳng định đúng.

⦁ \[\tan B = \frac{{AC}}{{AB}} = \frac{8}{6} = \frac{4}{3}.\] Do đó phương án C là khẳng định đúng.

⦁ \[\cot B = \frac{{AB}}{{AC}} = \frac{6}{8} = \frac{3}{4}.\] Do đó phương án D là khẳng định sai.

Vậy ta chọn phương án D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Với \(0^\circ < \alpha < 70^\circ \), ta có: \[90^\circ - \left( {70^\circ - \alpha } \right) = \alpha + 20^\circ ;\,\,\,90^\circ - \left( {80^\circ - \alpha } \right) = \alpha + 10^\circ .\]

Do đó:

\[A = \tan \alpha \cdot \tan \left( {\alpha + 10^\circ } \right) \cdot \tan \left( {\alpha + 20^\circ } \right) \cdot \tan \left( {70^\circ - \alpha } \right) \cdot \tan \left( {80^\circ - \alpha } \right) \cdot \tan \left( {90^\circ - \alpha } \right)\]

\[\,\,\,\,\, = \tan \alpha \cdot \tan \left( {\alpha + 10^\circ } \right) \cdot \tan \left( {\alpha + 20^\circ } \right) \cdot \cot \left( {\alpha + 20^\circ } \right) \cdot \cot \left( {\alpha + 10^\circ } \right) \cdot \cot \alpha \]

\[\,\,\,\,\, = \left( {\tan \alpha \cdot \cot \alpha } \right) \cdot \left[ {\tan \left( {\alpha + 10^\circ } \right) \cdot \cot \left( {\alpha + 10^\circ } \right)} \right] \cdot \left[ {\tan \left( {\alpha + 20^\circ } \right) \cdot \cot \left( {\alpha + 20^\circ } \right)} \right]\]

\[\,\,\,\,\, = 1 \cdot 1 \cdot 1 = 1.\]

</>

Lời giải

Đáp án đúng là: B

Ta mô hình hóa bài toán như hình vẽ bên.

Khoảng cách từ gốc cây đến điểm bị gãy là \[AB.\]

Khoảng cách từ điểm thân tre bị gãy đến ngọn cây là \[BC.\]

Khoảng cách từ ngọn cây chạm đất đến gốc là \[AC.\]

Đặt độ dài \(BC = x{\rm{\;(m)}}\,\,\left( {0 < x < 9} \right)\).

Suy ra: \(AB = 9 - x.\)

Xét \(\Delta ABC\) vuông tại \(A\) ta có: \(AB = BC \cdot \cos B\)

Suy ra \(9 - x = x \cdot \cos 32^\circ \)

\(9 - x \approx 0,85x\)

\(1,85x \approx 9\)

\[x \approx 4,9{\rm{\;(m)}} \approx {\rm{5\;m}}{\rm{.}}\]

Do đó điểm gãy cách gốc khoảng \(5\) m.

Vậy ta chọn phương án B

</>

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP