Quảng cáo
Trả lời:
Đáp án đúng là: C
Xét tam giác \[ABC\] vuông tại \[A\], theo Định lí Pythagore, ta có:
\[B{C^2} = A{B^2} + A{C^2} = {5^2} + {7^2} = 74.\] Do đó \[y = BC = \sqrt {74} .\]
Vì tam giác \[ABC\] vuông tại \[A\] nên \[\sin \widehat {ABC} = \frac{{AC}}{{BC}} = \frac{7}{{\sqrt {74} }}\] (1)
Vì tam giác \[ABH\] vuông tại \[H\] nên \[\sin \widehat {ABC} = \frac{{AH}}{{AB}} = \frac{x}{5}\] (2)
Từ (1), (2), ta thu được \[\frac{x}{5} = \frac{7}{{\sqrt {74} }}.\]
Suy ra \[x = \frac{{35}}{{\sqrt {74} }} = \frac{{35\sqrt {74} }}{{74}}.\]
Vậy \[x = \frac{{35\sqrt {74} }}{{74}};\,\,y = \sqrt {74} .\]
Do đó ta chọn phương án C.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Với \(0^\circ < \alpha < 70^\circ \), ta có: \[90^\circ - \left( {70^\circ - \alpha } \right) = \alpha + 20^\circ ;\,\,\,90^\circ - \left( {80^\circ - \alpha } \right) = \alpha + 10^\circ .\]
Do đó:
\[A = \tan \alpha \cdot \tan \left( {\alpha + 10^\circ } \right) \cdot \tan \left( {\alpha + 20^\circ } \right) \cdot \tan \left( {70^\circ - \alpha } \right) \cdot \tan \left( {80^\circ - \alpha } \right) \cdot \tan \left( {90^\circ - \alpha } \right)\]
\[\,\,\,\,\, = \tan \alpha \cdot \tan \left( {\alpha + 10^\circ } \right) \cdot \tan \left( {\alpha + 20^\circ } \right) \cdot \cot \left( {\alpha + 20^\circ } \right) \cdot \cot \left( {\alpha + 10^\circ } \right) \cdot \cot \alpha \]
\[\,\,\,\,\, = \left( {\tan \alpha \cdot \cot \alpha } \right) \cdot \left[ {\tan \left( {\alpha + 10^\circ } \right) \cdot \cot \left( {\alpha + 10^\circ } \right)} \right] \cdot \left[ {\tan \left( {\alpha + 20^\circ } \right) \cdot \cot \left( {\alpha + 20^\circ } \right)} \right]\]
\[\,\,\,\,\, = 1 \cdot 1 \cdot 1 = 1.\]
</>
Lời giải
Đáp án đúng là: B
Ta mô hình hóa bài toán như hình vẽ bên.
Khoảng cách từ gốc cây đến điểm bị gãy là \[AB.\]
Khoảng cách từ điểm thân tre bị gãy đến ngọn cây là \[BC.\]
Khoảng cách từ ngọn cây chạm đất đến gốc là \[AC.\]
Đặt độ dài \(BC = x{\rm{\;(m)}}\,\,\left( {0 < x < 9} \right)\).
Suy ra: \(AB = 9 - x.\)
Xét \(\Delta ABC\) vuông tại \(A\) ta có: \(AB = BC \cdot \cos B\)
Suy ra \(9 - x = x \cdot \cos 32^\circ \)
\(9 - x \approx 0,85x\)
\(1,85x \approx 9\)
\[x \approx 4,9{\rm{\;(m)}} \approx {\rm{5\;m}}{\rm{.}}\]
Do đó điểm gãy cách gốc khoảng \(5\) m.
Vậy ta chọn phương án B
</>
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.