Câu hỏi:

11/10/2024 183

Cho hệ phương trình \[\left\{ \begin{array}{l}x - y = 2\\ - x + 4y = 9\end{array} \right.,\] cặp số nào sau đây là nghiệm của hệ phương trình đã cho?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

⦁ Thay \[x = \frac{{17}}{3};y = \frac{{11}}{3}\] vào mỗi phương trình trong hệ, ta được:

\[\frac{{17}}{3} - \frac{{11}}{3} = 2\] (đúng);

\[ - \frac{{17}}{3} + 4 \cdot \frac{{11}}{3} = 9\] (đúng).

Do đó cặp số \[\left( {\frac{{17}}{3};\frac{{11}}{3}} \right)\] là nghiệm của từng phương trình trong hệ.

Vì vậy cặp số \[\left( {\frac{{17}}{3};\frac{{11}}{3}} \right)\] là nghiệm của hệ phương trình đã cho.

⦁ Thay \[x = 17,y = - 11\] vào phương trình \[x - y = 2,\] ta được: \[17 - \left( { - 11} \right) = 28 \ne 2.\]

Suy ra cặp số \[\left( {17; - 11} \right)\] không là nghiệm của phương trình thứ nhất trong hệ.

Do đó cặp số \[\left( {17; - 11} \right)\] không là nghiệm của hệ phương trình đã cho.

Tương tự, thay lần lượt các cặp số \[\left( {\frac{{11}}{3};\frac{{17}}{3}} \right)\] và \[\left( { - 11;0} \right)\] vào hệ phương trình đã cho, ta cũng thấy rằng các cặp số này không phải là nghiệm của hệ phương trình đó.

Vậy ta chọn phương án B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Đáp án đúng là: A

Hệ phương trình bậc nhất hai ẩn có dạng: \[\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\,\,\,\left( I \right),\] ở đó mỗi phương trình \[ax + by = c\] và \[a'x + b'y = c'\] đều là phương trình bậc nhất hai ẩn.

Ta thấy chỉ có hệ phương trình ở phương án A có dạng hệ \[\left( I \right).\]

Vậy ta chọn phương án A.

Câu 2

Lời giải

Đáp án đúng là: B

⦁ Thay \[x = - 2,y = 3\] vào phương trình \[2x + y = 2,\] ta được:

\[2 \cdot \left( { - 2} \right) + 3 = - 1 \ne 2.\]

Do đó cặp số \[\left( { - 2;3} \right)\] không là nghiệm của phương trình \[2x + y = 2.\]

⦁ Thay \[x = - 2,y = 3\] vào phương trình \[2x - y = - 7,\] ta được:

\[2 \cdot \left( { - 2} \right) - 3 = - 7\] (đúng)

Do đó cặp số \[\left( { - 2;3} \right)\] là nghiệm của phương trình \[2x - y = - 7.\]

⦁ Thay \[x = - 2,y = 3\] vào phương trình \[x - 3y = - 10,\] ta được:

\[ - 2 - 3 \cdot 3 = - 11 \ne - 10.\]

Do đó cặp số \[\left( { - 2;3} \right)\] không là nghiệm của phương trình \[x - 3y = - 10.\]

⦁ Thay \[x = - 2,y = 3\] vào phương trình \[x - y = 1,\] ta được:

\[ - 2 - 3 = - 5 \ne 1.\]

Do đó cặp số \[\left( { - 2;3} \right)\] không là nghiệm của phương trình \[x - y = 1.\]

Vậy ta chọn phương án B.

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP