Câu hỏi:

11/10/2024 211 Lưu

III. Vận dụng

Cho phương trình \[3x + \left( {{m^2} + m} \right)y = 6\] có nghiệm \[\left( { - 2;6} \right)\]. Có bao nhiêu giá trị \(m\) thỏa mãn điều kiện trên?

A. 0.

B. 1.

C. 2.

D. 3.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Thay \[x = - 2,y = 6\] vào phương trình đã cho, ta được:

\[3 \cdot \left( { - 2} \right) + \left( {{m^2} + m} \right) \cdot 6 = 6\].

Giải phương trình:

\[3 \cdot \left( { - 2} \right) + \left( {{m^2} + m} \right) \cdot 6 = 6\]

\[6\left( {{m^2} + m} \right) = 12\]

\[{m^2} + m = 2\]

\({m^2} + m - 2 = 0\)

\({m^2} - m + 2m - 2 = 0\)

\(m\left( {m - 1} \right) + 2\left( {m - 1} \right) = 0\)

\(\left( {m - 1} \right)\left( {m + 2} \right) = 0\)

\(m - 1 = 0\) hoặc \(m + 2 = 0\)

\(m = 1\) hoặc \(m = - 2\)

Vậy có hai giá trị \(m\) thỏa mãn yêu cầu đề bài.

Do đó ta chọn phương án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[\left\{ \begin{array}{l} - x + 4y = 0\\3x - 2y = 10.\end{array} \right.\]

B. \[\left\{ \begin{array}{l}{x^2} - 5{y^2} = 2\\3y = 4.\end{array} \right.\]

C. \[\left\{ \begin{array}{l}0x + 0y = - 5\\4x - 7y = - 8.\end{array} \right.\]

D. \[\left\{ \begin{array}{l}2x = - 7\\x + \frac{1}{y} = 6.\end{array} \right.\]

Lời giải

Đáp án đúng là: A

Hệ phương trình bậc nhất hai ẩn có dạng: \[\left\{ \begin{array}{l}ax + by = c\\a'x + b'y = c'\end{array} \right.\,\,\,\,\,\left( I \right),\] ở đó mỗi phương trình \[ax + by = c\] và \[a'x + b'y = c'\] đều là phương trình bậc nhất hai ẩn.

Ta thấy chỉ có hệ phương trình ở phương án A có dạng hệ \[\left( I \right).\]

Vậy ta chọn phương án A.

Câu 2

A. \[2x + y = 2.\]

B. \[2x - y = - 7.\]

C. \[x - 3y = - 10.\]

D. \[x - y = 1.\]

Lời giải

Đáp án đúng là: B

⦁ Thay \[x = - 2,y = 3\] vào phương trình \[2x + y = 2,\] ta được:

\[2 \cdot \left( { - 2} \right) + 3 = - 1 \ne 2.\]

Do đó cặp số \[\left( { - 2;3} \right)\] không là nghiệm của phương trình \[2x + y = 2.\]

⦁ Thay \[x = - 2,y = 3\] vào phương trình \[2x - y = - 7,\] ta được:

\[2 \cdot \left( { - 2} \right) - 3 = - 7\] (đúng)

Do đó cặp số \[\left( { - 2;3} \right)\] là nghiệm của phương trình \[2x - y = - 7.\]

⦁ Thay \[x = - 2,y = 3\] vào phương trình \[x - 3y = - 10,\] ta được:

\[ - 2 - 3 \cdot 3 = - 11 \ne - 10.\]

Do đó cặp số \[\left( { - 2;3} \right)\] không là nghiệm của phương trình \[x - 3y = - 10.\]

⦁ Thay \[x = - 2,y = 3\] vào phương trình \[x - y = 1,\] ta được:

\[ - 2 - 3 = - 5 \ne 1.\]

Do đó cặp số \[\left( { - 2;3} \right)\] không là nghiệm của phương trình \[x - y = 1.\]

Vậy ta chọn phương án B.

Câu 3

A. \[2x + 3y = - 5.\]

B. \[0x - 7y = 1.\]

C. \[0x + 0y = 2.\]

D. \[4x - 0y = 11.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\left( {3m - 1;2m - 1} \right).\]

B. \[\left( {2m - 1;1} \right).\]

C. \[\left( {2m + 1;3m + 1} \right).\]

D. \[\left( {m;3m + 1} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[a = 2,\,\,b = - 4,\,\,c = 1.\]

B. \[a = 2,\,\,b = 4,\,\,c = - 1.\]

C. \[a = - 4,\,\,b = 2,\,\,c = - 1.\]

D. \[a = 2,\,\,b = - 4,\,\,c = - 1.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[\left\{ \begin{array}{l}x + y = - 1\\y - 2x = 5.\end{array} \right.\]

B. \[\left\{ \begin{array}{l}x + y = 1\\2x - y = 5.\end{array} \right.\]

C. \[\left\{ \begin{array}{l}x + y = - 1\\2x - y = 7.\end{array} \right.\]

D. \[\left\{ \begin{array}{l}x + y = 1\\2x - y = 7.\end{array} \right.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP