Câu hỏi:

14/10/2024 764

Cho \[\int\limits_0^1 {f\left( x \right)dx = - 1} \]; \[\int\limits_0^3 {f\left( x \right)dx = 5} \]. Tính \[\int\limits_1^3 {f\left( x \right)dx} \]

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Ta có: \[\int\limits_0^3 {f\left( x \right)dx = } \int\limits_0^1 {f\left( x \right)dx + } \int\limits_1^3 {f\left( x \right)dx} \]

Suy ra \[\int\limits_1^3 {f\left( x \right)dx} = \int\limits_0^3 {f\left( x \right)dx} - \int\limits_0^1 {f\left( x \right)dx} = 5 - \left( { - 1} \right) = 6\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: A

Ta có: \[\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\left( {2\sin x + 3\cos x + x} \right)dx} \]

\[ = \left. {\left( { - 2\cos x + 3\sin x + \frac{{{x^2}}}{2}} \right)} \right|_{\frac{\pi }{3}}^{\frac{\pi }{2}}\]

\[ = 3 + \frac{{{\pi ^2}}}{8} + 1 - \frac{{3\sqrt 3 }}{2} - \frac{{{\pi ^2}}}{{18}} = \frac{{8 - 3\sqrt 3 }}{2} - \frac{{5{\pi ^2}}}{{72}}\].

Do đó, \[a = 8,b = - 3,c = 72.\]

Vậy \[P = a + 2b + 3c = 8 + 2.\left( { - 3} \right) + 3.72 = 218.\]

Câu 2

Lời giải

Đáp án đúng là: B

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP