Cho \[f\left( x \right) = \left\{ \begin{array}{l}1,{\rm{ }}x \ge 1\\2x - 1,{\rm{ }}x < 1\end{array} \right.\]. Tính giá trị \[I = \int\limits_{ - 1}^2 {f\left( x \right)dx} \]
</>
Quảng cáo
Trả lời:
Đáp án đúng là: A
Ta có: \[I = \int\limits_{ - 1}^2 {f\left( x \right)dx} = \int\limits_{ - 1}^1 {f\left( x \right)dx} + \int\limits_1^2 {f\left( x \right)dx} \]
\[ = \int\limits_{ - 1}^1 {\left( {2x - 1} \right)dx + \int\limits_1^2 {1dx} } \]
\[ = \left. {\left( {{x^2} - x} \right)} \right|_{ - 1}^1 + \left. x \right|_1^2 = - 1\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: A
Ta có: \[\int\limits_{\frac{\pi }{3}}^{\frac{\pi }{2}} {\left( {2\sin x + 3\cos x + x} \right)dx} \]
\[ = \left. {\left( { - 2\cos x + 3\sin x + \frac{{{x^2}}}{2}} \right)} \right|_{\frac{\pi }{3}}^{\frac{\pi }{2}}\]
\[ = 3 + \frac{{{\pi ^2}}}{8} + 1 - \frac{{3\sqrt 3 }}{2} - \frac{{{\pi ^2}}}{{18}} = \frac{{8 - 3\sqrt 3 }}{2} - \frac{{5{\pi ^2}}}{{72}}\].
Do đó, \[a = 8,b = - 3,c = 72.\]
Vậy \[P = a + 2b + 3c = 8 + 2.\left( { - 3} \right) + 3.72 = 218.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.