Câu hỏi:

14/10/2024 4,350

Cho hai mặt phẳng \[\left( P \right):2x - y + 2z - 5 = 0\]; \[\left( Q \right):4x - 2y + 4z + 1 - m = 0\] và điểm \[M\left( {2;1;5} \right)\]. Khi đó:

a) Khoảng cách từ \[M\] đến mặt phẳng \[\left( P \right)\] bằng \[\frac{8}{3}.\]

b) Với \[m = 0\] thì khoảng cách từ \[M\] đến mặt phẳng \[\left( Q \right)\] bằng \[\frac{9}{2}.\]

c) Với \[m = 3\] thì khoảng cách giữa mặt phẳng \[\left( P \right)\] và mặt phẳng \[\left( Q \right)\] bằng \[3.\]

d) Có hai giá trị của \[m\] để khoảng cách từ \[M\] đến mặt phẳng \[\left( Q \right)\] bằng 1. Khi đó tổng của tất cả các giá trị \[m\] bằng 5.

Số mệnh đề đúng trong các mệnh đề trên là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

a) Ta có: \[d\left( {M,\left( P \right)} \right) = \frac{{\left| {2.2 - 1 + 2.5 - 5} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = \frac{8}{3}.\]

Vậy ý a đúng.

b) Ta có: \[d\left( {M,\left( Q \right)} \right) = \frac{{\left| {4.2 - 2.1 + 4.5 + 1 - m} \right|}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2} + {4^2}} }} = \frac{{\left| {27 - m} \right|}}{6}.\]

Với \[m = 0\] thì \[d\left( {M,\left( Q \right)} \right) = \frac{{\left| {27 - 0} \right|}}{6} = \frac{9}{2}.\]

Vậy ý b đúng.

c) Với \[m = 3\] thì \[\left( Q \right):4x - 2y + 4z - 2 = 0\].

Nhận thấy \[\frac{2}{4} = \frac{{ - 1}}{{ - 2}} = \frac{2}{4} \ne \frac{{ - 5}}{{ - 2}}\] do đó \[\left( P \right)\parallel \left( Q \right)\].

Có \[\left( Q \right):4x - 2y + 4z - 2 = 0\]\[ \Leftrightarrow 2x - y + 2z - 1 = 0\]

Suy ra \[d\left( {\left( P \right),\left( Q \right)} \right) = \frac{{\left| { - 5 - \left( { - 1} \right)} \right|}}{3} = 2.\]

Vậy ý c sai.

d) Ta có: \[d\left( {M,\left( Q \right)} \right) = \frac{{\left| {4.2 - 2.1 + 4.5 + 1 - m} \right|}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2} + {4^2}} }} = \frac{{\left| {27 - m} \right|}}{6}.\]

Để \[d\left( {M,\left( Q \right)} \right) = 1\] thì \[\frac{{\left| {27 - m} \right|}}{6} = 1\].

\[\left| {27 - m} \right| = 6 \Leftrightarrow \left[ \begin{array}{l}m = 21\\m = 33\end{array} \right.\].

Vậy có 2 giá trị \[m\] để khoảng cách từ \[M\] đến \[\left( Q \right)\] bằng 1. Và tổng của hai giá trị là 54.

Vậy ý d sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: C

Ta có: \[MH = d\left( {M,\left( P \right)} \right) = \frac{{\left| {2.3 - 1 + 2.\left( { - 2} \right) - 4} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }} = 1.\]

Lời giải

Đáp án đúng là: B

Mặt phẳng \[\left( P \right)\] có vectơ pháp tuyến \[\overrightarrow {{n_P}} = \left( {2;m;3} \right).\]

Mặt phẳng \[\left( Q \right)\] có vectơ phép tuyến \[\overrightarrow {{n_Q}} = \left( {n; - 8; - 6} \right).\]

Để \[\left( P \right)\] song song với \[\left( Q \right)\] thì \[\overrightarrow {{n_P}} = k\overrightarrow {{n_Q}} {\rm{ }}\left( {k \in \mathbb{R}} \right) \Leftrightarrow \left\{ \begin{array}{l}2 = kn\\m = - 8k\\3 = - 6k\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}k = - \frac{1}{2}\\m = 4\\n = - 4.\end{array} \right.\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP