Câu hỏi:
16/10/2024 1,723Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \[y = \ln x,{\rm{ }}y = 1\] và hai đường thẳng \[x = 1,x = e\] bằng
Quảng cáo
Trả lời:
Đáp án đúng là: D
Ta có: \[S = \int\limits_1^e {\left| {\ln x - 1} \right|dx} = \int\limits_1^e { - \left( {\ln x - 1} \right)dx} \]
\[ = \int\limits_1^e {1dx - \int\limits_1^e {\ln xdx} } \]
Cho \[I = \int {\ln xdx} \], ta đặt: \[\left\{ \begin{array}{l}u = \ln x\\dv = dx\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = \frac{1}{x}dx\\v = x\end{array} \right.\]
Suy ra \[I = \int {\ln xdx} = x\ln x - \int {x.\frac{1}{x}dx = x\ln x - x} \]
Suy ra \[S = \left. x \right|_1^e - \left. {\left( {x\ln x - x} \right)} \right|_1^e = e - 2.\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: B
Ta có: \[S = \int\limits_{ - 2}^3 {\left| {f\left( x \right)} \right|dx = } \int\limits_{ - 2}^1 {\left| {f\left( x \right)} \right|dx} + \int\limits_1^3 {\left| {f\left( x \right)} \right|dx} \]
\[ = \int\limits_{ - 2}^1 {f\left( x \right)dx} - \int\limits_1^3 {f\left( x \right)dx} .\]
Lời giải
Đáp án đúng là: A
Gắn hệ trục tọa độ sao cho \[AB\] trùng \[Ox\], \[A\] trùng \[O\] khi đó parabol có đỉnh \[G\left( {2;4} \right)\] và đi qua gốc tọa độ.
Giả sử phương trình của parabol có dạng \[y = a{x^2} + bx + c{\rm{ }}\left( {a \ne 0} \right).\]
Vì parabol có đỉnh là \[G\left( {2;4} \right)\] và đi qua điểm O(0; 0) nên ta có:
\[\left\{ \begin{array}{l}c = 0\\ - \frac{b}{{2a}} = 2\\4a + 2b + c = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 4\\c = 0.\end{array} \right.\]
Suy ra phương trình parabol là \[y = f\left( x \right) = - {x^2} + 4x.\]
Diện tích của cả cổng là \[S = \int\limits_0^4 {\left( { - {x^2} + 4x} \right)dx = \left. {\left( { - \frac{{{x^3}}}{3} + 2{x^2}} \right)} \right|} _0^4 = \frac{{32}}{3}\] (m3).
Mặt khác, ta có chiều cao \[CF = DE = f\left( {0,9} \right) = 2,79\] (m);
\[CD = 4 - 2.0,9 = 2,2\] (m).
Diện tích hai cánh cổng là \[{S_{CDEF}} = CD.CF = 2,79.2,2 = 6,138\] (m2).
Diện tích phần trang trí hoa là: \[{S_{tt}} = S - {S_{CDEF}} = \frac{{32}}{3} - 6,138 = \frac{{6793}}{{1500}}\] (m2).
Vậy tổng số tiền để làm cổng là: \[6,138.1200000 + \frac{{6793}}{{1500}}.900000 = 11441400\] (đồng).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.