Câu hỏi:

21/10/2024 86

Cho bất đẳng thức \[a > b\] và cho số thực\[c\]. Xác định dấu của hiệu:\[\left( {a + c} \right)--\left( {b + c} \right)\] .

Đáp án chính xác

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Do \[a > b\] nên \[a--b > 0\].

Ta xét hiệu:\[\left( {a + c} \right)--\left( {b + c} \right) = a + c--b--c = a--b > 0\].

Vậy \[\left( {a + c} \right)--\left( {b + c} \right) > 0\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

II. Thông hiểu

So sánh hai số \(a\) và \(b\), nếu \[a + 2024 < b + 2024\].

Xem đáp án » 21/10/2024 1,952

Câu 2:

Khẳng định “\(a\) không lớn hơn \(b\)” được diễn tả là

Xem đáp án » 21/10/2024 543

Câu 3:

So sánh hai số \[3 + {23^{2024}}\] và \[4 + {23^{2024}}\].

Xem đáp án » 21/10/2024 269

Câu 4:

Với ba số \(a,b,c\), ta có:

Xem đáp án » 21/10/2024 267

Câu 5:

Nếu \[a > b\] thì:

Xem đáp án » 21/10/2024 247

Câu 6:

Một tam giác có độ dài các cạnh là \[1,{\rm{ }}2,{\rm{ }}x\] (\[x\] là số nguyên). Khi đó

Xem đáp án » 21/10/2024 191

Câu 7:

Vế trái của bất đẳng thức \({x^3} + 3 > x - \frac{1}{2}\) là

Xem đáp án » 21/10/2024 163

Bình luận


Bình luận