Câu hỏi:

22/10/2024 3,989

Khi một quả bóng được đá lên, nó sẽ đạt đến độ cao nào đó rồi rơi xuống. Hình minh hoạ quỹ đạo của quả bóng là một phần của cung parabol trong mặt phẳng toạ độ Oth, trong đó t là thời gian (tính bằng giây) kể từ khi quả bóng được đá lên và h là độ cao (tính bằng mét) của quả bóng. Giả thiết rằng quả bóng được đá từ mặt đất. Sau khoảng 2s, quả bóng lên đến vị trí cao nhất là 8m.

Media VietJack

Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?

 

ĐÚNG

SAI

Hàm số bậc hai biểu thị độ cao h theo thời gian t và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống này là \[f(t) =  - 2{t^2} + 4t\].

¡

¡

Độ cao của quả bóng sau khi đá lên được 3s là 6m

¡

¡

Sau 4 giây thì quả bóng chạm đất kể từ khi đá lên

¡

¡

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 

ĐÚNG

SAI

Hàm số bậc hai biểu thị độ cao h theo thời gian t và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống này là \[f(t) =  - 2{t^2} + 4t\].

¡

¤

Độ cao của quả bóng sau khi đá lên được 3s là 6m

¤

¡

Sau 4 giây thì quả bóng chạm đất kể từ khi đá lên

¤

¡

Phương pháp giải

- Tìm hàm số bậc hai biểu thị độ cao h theo thời gian tvà có phần đồ thị trùng với quỹ đạo của quả bóng.

- Tính độ cao của quả bóng sau khi đá lên được 3s.

- Cho h = 0 rồi tìm t.

Lời giải

a) Gọi hàm số bậc hai biểu thị độ cao \(h(m)\) theo thời gian \(t(s)\) là:

\(h = f(t) = a{t^2} + bt + c(a < 0)\). Theo giả thiết, quả bóng được đá lên từ mặt đất, nghĩa là \(f(0) = c = 0\), do đó \(f(t) = a{t^2} + bt\). Sau 2s, quả bóng lên đến vị trí cao nhất là 8m nên

\(\left\{ {\begin{array}{*{20}{l}}{ - \frac{b}{{2a}} = 2}\\{f(2) = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b =  - 4a}\\{4a + 2b = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b =  - 4a}\\{ - 4a = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a =  - 2}\\{b = 8.}\end{array}} \right.} \right.} \right.} \right.\)

Vậy \(f(t) =  - 2{t^2} + 8t\).

b) Độ cao của quả bóng sau khi đá lên được 3s là:

\(h = f(3) =  - {2.3^2} + 8.3 = 6(m){\rm{. }}\)

c) Cách 1. Quả bóng chạm đất (trở lại) khi độ cao h = 0, tức là:

Vì thế sau 4s quả bóng sẽ chạm đất kể từ khi đá lên.

Cách 2. Quỹ đạo chuyển động của quả bóng là một phần của cung parabol có trục đối xứng là đường thẳng . Điểm xuất phát và điểm quả bóng chạm đất (trở lại) đối xứng nhau qua đường thẳng . Vì thế sau  quả bóng sẽ chạm đất kể từ khi đá lên.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

 

Đáp án

 

ĐÚNG

SAI

Phản ứng giữa acid và base tạo ra nước và muối.

  X

Phản ứng giữa acid và base có thể tạo ra nước.

  X

Phản ứng giữa acid và base mất ít nhất vài giờ.

  X

Phương pháp giải

Dựa vào các lý thuyết acid - base đã nêu trong bài.

Lời giải

- Phản ứng acid - base the thuyết Lewis không đề cập đến việc sau phản ứng sản phẩm tạo ra có nước nên nhận định 1 và 2 sai.

- Không có bất kỳ lý thuyết nào trao đổi về tốc độ phản ứng của acid - base nên nhận định 3 là sai.

Câu 2

Cho hình chóp S.ABCD có mặt bên \((SAB)\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy, ABCD là hình chữ nhật với \(AB = a,BC = 2a\). Khoảng cách giữa hai đường thẳng AC và SD bằng

Lời giải

Media VietJack

Gọi O là tâm hình chữ nhật ABCD,H là trung điểm AB.

Do \((SAB) \bot (ABCD)\) và \(SH \bot AB\) nên \(SH \bot (ABCD)\).

Gọi I là giao điểm của HD và \(AC \Rightarrow ID = 2IH\).

Gọi \(G\) là trọng tâm .

Suy ra \(IG//SD \Rightarrow SD//(AGC)\).

\( \Rightarrow d(SD;AC) = d(SD;(AGC)) = d(D;(AGC)) = 2d(H;(AGC)){\rm{. }}\)

Dựng \(HK \bot AC \Rightarrow AC \bot (GHK)\).

Dựng \(HP \bot GK \Rightarrow HP \bot (GAC)\).

Suy ra \(d(H;(GAC)) = HP\).

Ta có \(AH = \frac{{AB}}{2} = \frac{a}{2};HO = \frac{{BC}}{2} = a;SH = \frac{{a\sqrt 3 }}{2} \Rightarrow HG = \frac{1}{3}SH = \frac{{a\sqrt 3 }}{6}\).

Xét tam giác GHK vuông tại \(H\):

\(\frac{1}{{H{P^2}}} = \frac{1}{{H{K^2}}} + \frac{1}{{H{G^2}}} = \frac{1}{{H{A^2}}} + \frac{1}{{H{O^2}}} + \frac{1}{{H{G^2}}} = \frac{{17}}{{{a^2}}}{\rm{. }}\)

Suy ra \(HP = \frac{{\sqrt {17} a}}{{17}}\).

Vậy \(d(SD;AC) = \frac{{2\sqrt {17} a}}{{17}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cho hàm số \(f(x)\) xác định trên [a;b]. Tìm mệnh đề đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay