Câu hỏi:
22/10/2024 4,309Cho hình chóp S.ABCD có mặt bên \((SAB)\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy, ABCD là hình chữ nhật với \(AB = a,BC = 2a\). Khoảng cách giữa hai đường thẳng AC và SD bằng
Quảng cáo
Trả lời:
Gọi O là tâm hình chữ nhật ABCD,H là trung điểm AB.
Do \((SAB) \bot (ABCD)\) và \(SH \bot AB\) nên \(SH \bot (ABCD)\).
Gọi I là giao điểm của HD và \(AC \Rightarrow ID = 2IH\).
Gọi \(G\) là trọng tâm .
Suy ra \(IG//SD \Rightarrow SD//(AGC)\).
\( \Rightarrow d(SD;AC) = d(SD;(AGC)) = d(D;(AGC)) = 2d(H;(AGC)){\rm{. }}\)
Dựng \(HK \bot AC \Rightarrow AC \bot (GHK)\).
Dựng \(HP \bot GK \Rightarrow HP \bot (GAC)\).
Suy ra \(d(H;(GAC)) = HP\).
Ta có \(AH = \frac{{AB}}{2} = \frac{a}{2};HO = \frac{{BC}}{2} = a;SH = \frac{{a\sqrt 3 }}{2} \Rightarrow HG = \frac{1}{3}SH = \frac{{a\sqrt 3 }}{6}\).
Xét tam giác GHK vuông tại \(H\):
\(\frac{1}{{H{P^2}}} = \frac{1}{{H{K^2}}} + \frac{1}{{H{G^2}}} = \frac{1}{{H{A^2}}} + \frac{1}{{H{O^2}}} + \frac{1}{{H{G^2}}} = \frac{{17}}{{{a^2}}}{\rm{. }}\)
Suy ra \(HP = \frac{{\sqrt {17} a}}{{17}}\).
Vậy \(d(SD;AC) = \frac{{2\sqrt {17} a}}{{17}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án
|
ĐÚNG |
SAI |
Phản ứng giữa acid và base tạo ra nước và muối. |
X | |
Phản ứng giữa acid và base có thể tạo ra nước. |
X | |
Phản ứng giữa acid và base mất ít nhất vài giờ. |
X |
Phương pháp giải
Dựa vào các lý thuyết acid - base đã nêu trong bài.
Lời giải
- Phản ứng acid - base the thuyết Lewis không đề cập đến việc sau phản ứng sản phẩm tạo ra có nước nên nhận định 1 và 2 sai.
- Không có bất kỳ lý thuyết nào trao đổi về tốc độ phản ứng của acid - base nên nhận định 3 là sai.
Lời giải
|
ĐÚNG |
SAI |
Hàm số bậc hai biểu thị độ cao h theo thời gian t và có phần đồ thị trùng với quỹ đạo của quả bóng trong tình huống này là \[f(t) = - 2{t^2} + 4t\]. |
¡ |
¤ |
Độ cao của quả bóng sau khi đá lên được 3s là 6m |
¤ |
¡ |
Sau 4 giây thì quả bóng chạm đất kể từ khi đá lên |
¤ |
¡ |
Phương pháp giải
- Tìm hàm số bậc hai biểu thị độ cao h theo thời gian tvà có phần đồ thị trùng với quỹ đạo của quả bóng.
- Tính độ cao của quả bóng sau khi đá lên được 3s.
- Cho h = 0 rồi tìm t.
Lời giải
a) Gọi hàm số bậc hai biểu thị độ cao \(h(m)\) theo thời gian \(t(s)\) là:
\(h = f(t) = a{t^2} + bt + c(a < 0)\). Theo giả thiết, quả bóng được đá lên từ mặt đất, nghĩa là \(f(0) = c = 0\), do đó \(f(t) = a{t^2} + bt\). Sau 2s, quả bóng lên đến vị trí cao nhất là 8m nên
\(\left\{ {\begin{array}{*{20}{l}}{ - \frac{b}{{2a}} = 2}\\{f(2) = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = - 4a}\\{4a + 2b = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{b = - 4a}\\{ - 4a = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - 2}\\{b = 8.}\end{array}} \right.} \right.} \right.} \right.\)
Vậy \(f(t) = - 2{t^2} + 8t\).
b) Độ cao của quả bóng sau khi đá lên được 3s là:
\(h = f(3) = - {2.3^2} + 8.3 = 6(m){\rm{. }}\)
c) Cách 1. Quả bóng chạm đất (trở lại) khi độ cao h = 0, tức là:
Vì thế sau 4s quả bóng sẽ chạm đất kể từ khi đá lên.
Cách 2. Quỹ đạo chuyển động của quả bóng là một phần của cung parabol có trục đối xứng là đường thẳng . Điểm xuất phát và điểm quả bóng chạm đất (trở lại) đối xứng nhau qua đường thẳng . Vì thế sau quả bóng sẽ chạm đất kể từ khi đá lên.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 29)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 8)