Câu hỏi:

23/10/2024 4,542

Trong không gian Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} + 4x - 6y + m = 0\) (\(m\) là tham số) và đường thẳng \(\Delta :\left\{ {\begin{array}{*{20}{l}}{x = 4 + 2t}\\{y = 3 + t}\\{z = 3 + 2t}\end{array}} \right.\). Biết đường thẳng \(\Delta \) cắt mặt cầu \((S)\) tại hai điểm phân biệt A, B sao cho \(AB = 8.\) Giá trị của tham số \(m\) thuộc khoảng nào trong các khoảng dưới đây? 

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Gọi \(H\) là trung điểm đoạn thẳng \(AB \Rightarrow IH \bot AB,HA = 4\).

Mặt cầu \((S)\) có tâm \(I( - 2;3;0)\), bán kính \(R = \sqrt {13 - m} ,\,\,(m < 13)\).

Đường thẳng \(\Delta \) đi qua \(M(4;3;3)\) và có 1 vectơ chỉ phương \(\vec u = (2;1;2)\).

Ta có: \(\overrightarrow {IM}  = (6;0;3) \Rightarrow [\overrightarrow {IM} ,\vec u] = ( - 3; - 6;6) \Rightarrow IH = d(I,\Delta ) = \frac{{\left| {\left[ {\overrightarrow {IM} ,\vec u} \right]} \right|}}{{|\vec u|}} = 3\)

\( \Rightarrow {R^2} = I{H^2} + H{A^2} \Leftrightarrow 13 - m = {3^2} + {4^2} \Leftrightarrow m =  - 12\).

Vậy tham số \(m\) thuộc \(( - 15; - 5)\). 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số lượng vi khuẩn tăng sau mỗi phút lên là cấp số nhân \(\left( {{u_n}} \right)\) với công bội \(q = 2\). Ta có: \({u_6} = 64000 \Rightarrow {u_1}.{q^5} = 64000 \Rightarrow {u_1} = 2000\).

Sau \(n\) phút thì số lượng vi khuẩn là \({u_{n + 1}}\).

\({u_{n + 1}} = 2048000 \Rightarrow {u_1}.{q^n} = 2048000 \Rightarrow {2000.2^n} = 2048000 \Rightarrow n = 10.{\rm{ }}\)

Vậy sau 10 phút thì có được 2048000 con.

Lời giải

Đặt \(h = 5(m)\).

Gọi \({h_n}\) là độ cao (tính bằng mét) của quả bóng sau lần nảy lên thứ \(n\).

Lần nảy lên đầu tiên, quả bóng đạt độ cao \({h_1} = \frac{2}{3}h\).

Lần nảy lên thứ hai, quả bóng đạt độ cao \({h_2} = \frac{2}{3}{h_1}\).

Tương tự, lần nảy lên thứ \(n\), quả bóng đạt độ cao \({h_n} = \frac{2}{3}{h_{n - 1}}\).

\( \Rightarrow \) Tổng các quãng đường khi rơi và nảy của quả bóng từ lúc thả bóng cho đến lúc bóng không nảy lên nữa bằng tổng độ cao của của bóng khi nảy lên + tổng khoảng cách rơi xuống của quả bóng.

\( \Rightarrow T = \left( {h + {h_1} + {h_2} +  \ldots  + {h_n} +  \ldots } \right) + \left( {{h_1} + {h_2} +  \ldots  + {h_n} + {h_{n + 1}} +  \ldots } \right)\)

\( \Rightarrow T\) là tổng của hai cấp số nhân lùi vô hạn với số hạng đầu lần lượt là \(h\) và \({h_1}\); công bội \(q = \frac{2}{3}\).

\( \Rightarrow T = \frac{h}{{1 - \frac{2}{3}}} + \frac{{{h_1}}}{{1 - \frac{2}{3}}} = 3\left( {h + {h_1}} \right) = 3\left( {5 + \frac{2}{3}.5} \right) = 25(m){\rm{. }}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay