Câu hỏi:
23/10/2024 197
Cho hàm số y = f(x) liên tục trên đoạn [a,b] có đồ thị như hình vẽ và c ∈ [a,b].
Gọi S là diện tích của hình phẳng (H) giới hạn bởi đồ thị hàm số y = f(x) và các đường thẳng y = 0, x = a, x = b. Mệnh đề nào sau đây sai?

Gọi S là diện tích của hình phẳng (H) giới hạn bởi đồ thị hàm số y = f(x) và các đường thẳng y = 0, x = a, x = b. Mệnh đề nào sau đây sai?
Quảng cáo
Trả lời:
Ta có \(f(x) \ge 0,\forall x \in [a;c]\) và \(f(x) \le 0,\forall x \in [c;b]\) nên diện tích hình phẳng là:
\(S = \int\limits_a^b {\left| {f(x)} \right|{\rm{d}}x} = \int\limits_a^c {\left| {f(x)} \right|{\rm{d}}x} + \int\limits_c^b {\left| {f(x)} \right|{\rm{d}}x} = \int\limits_a^c {f(x){\rm{d}}x} - \int\limits_c^b {f(x){\rm{d}}x} = \int\limits_a^c f (x){\rm{d}}x + \int\limits_b^c {f(x){\rm{d}}x} .\)
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục tọa độ như hình vẽ. Parabol có phương trình dạng \(y = a{x^2} + bx\).
Vì chiếc cổng hình parabol có chiều rộng 12 m và chiều cao, theo hình vẽ ta có parabol đi qua các điểm (12;0) và (6;8), suy ra: \(\left\{ {\begin{array}{*{20}{l}}{144a + 12b = 0}\\{36a + 6b = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - \frac{2}{9}}\\{b = \frac{8}{3}}\end{array}.} \right.} \right.\)
Suy ra parabol có phương trình \(y = - \frac{2}{9}{x^2} + \frac{8}{3}\).
Do chiếc xe tải có chiều ngang 6 m đi vào vị trí chính giữa cổng nên xe sẽ chạm tường tại điểm A(3;6) khi đó chiều cao của xe là 6 m.
Vậy điều kiện để xe tải có thể đi vào cổng mà không chạm tường là 0 < h < 6.
Lời giải
Hướng dẫn giải:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.