Câu hỏi:
23/10/2024 166Trong không gian Oxyz, cho hai mặt phẳng \((P):2ax - (b + 3)y + 3z - 2 = 0\) và \((Q): - (b + 2)x + ay - \) \(3z + 1 = 0\), trong đó \(a\) và \(b\) là tham số. Gọi \(S\) là tập hợp các giá trị \((a;b)\) để hai mặt phẳng \((P)\) và \((Q)\) song song. Số phần tử của tập \(S\) là
Quảng cáo
Trả lời:
Nếu (P) // (Q) thì
\(\frac{{2a}}{{ - (b + 2)}} = \frac{{ - b - 3}}{a} = \frac{3}{{ - 3}}\)
\( \Leftrightarrow \left\{ \begin{array}{l}2a = b + 2\\a = b + 3\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = - 4\end{array} \right..\)
Thử lại, với \(a = - 1\) và \(b = - 4\), ta có:
\((P): - 2x + y + 3z - 2 = 0\).
\((Q):2x - y - 3z + 1 = 0\).
Do \((0;2;0)\) thuộc \((P)\) nhưng không thuộc \((Q)\), do đó \((P)//(Q)\).
Vậy \(S = \{ ( - 1; - 4)\} \).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục tọa độ như hình vẽ. Parabol có phương trình dạng \(y = a{x^2} + bx\).
Vì chiếc cổng hình parabol có chiều rộng 12 m và chiều cao, theo hình vẽ ta có parabol đi qua các điểm (12;0) và (6;8), suy ra: \(\left\{ {\begin{array}{*{20}{l}}{144a + 12b = 0}\\{36a + 6b = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - \frac{2}{9}}\\{b = \frac{8}{3}}\end{array}.} \right.} \right.\)
Suy ra parabol có phương trình \(y = - \frac{2}{9}{x^2} + \frac{8}{3}\).
Do chiếc xe tải có chiều ngang 6 m đi vào vị trí chính giữa cổng nên xe sẽ chạm tường tại điểm A(3;6) khi đó chiều cao của xe là 6 m.
Vậy điều kiện để xe tải có thể đi vào cổng mà không chạm tường là 0 < h < 6.
Lời giải
Hướng dẫn giải:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.