Câu hỏi:
23/10/2024 118Gọi a là số thực lớn nhất để bất phương trình \({x^2} + a\ln \left( {{x^2} - x + 1} \right) - x \ge - 2\) nghiệm đúng với mọi số thực x. Mệnh đề nào dưới đây đúng?
Quảng cáo
Trả lời:
Đặt \(t = {x^2} - x + 1 = \left( {x - \frac{1}{2}} \right) + \frac{3}{4} \ge \frac{3}{4},\left( {t \ge \frac{3}{4}} \right)\).
Ta có: \({x^2} - x + 2 + a\ln \left( {{x^2} - x + 1} \right) \ge 0 \Leftrightarrow {x^2} - x + 1 + 1 + a\ln \left( {{x^2} - x + 1} \right) \ge 0\).
Đặt \(t = {x^2} - x + 1 = \left( {x - \frac{1}{2}} \right) + \frac{3}{4} \ge \frac{3}{4},\left( {t \ge \frac{3}{4}} \right)\).
Ta được bất phương trình \(t + 1 + a\ln t \ge 0\,\,(2),\left( {t \ge \frac{3}{4}} \right)\).
Đặt \(f(t) = t + 1 + a\ln t \ge 0 \Rightarrow {f^\prime }(t) = 1 + \frac{a}{t} > 0,\forall t \ge \frac{3}{4}\).
Do đó để bất phương trình (2) nghiệm đúng \(\forall t \ge \frac{3}{4}\) điều kiện là \(f\left( {\frac{{\rm{3}}}{{\rm{4}}}} \right) \ge {\rm{0}}\)
\( \Leftrightarrow \frac{7}{4} + a\ln \frac{3}{4} \ge 0 \Leftrightarrow a \le \frac{{ - 7}}{{4\ln \frac{3}{4}}} \approx 6,09.\)
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục tọa độ như hình vẽ. Parabol có phương trình dạng \(y = a{x^2} + bx\).
Vì chiếc cổng hình parabol có chiều rộng 12 m và chiều cao, theo hình vẽ ta có parabol đi qua các điểm (12;0) và (6;8), suy ra: \(\left\{ {\begin{array}{*{20}{l}}{144a + 12b = 0}\\{36a + 6b = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - \frac{2}{9}}\\{b = \frac{8}{3}}\end{array}.} \right.} \right.\)
Suy ra parabol có phương trình \(y = - \frac{2}{9}{x^2} + \frac{8}{3}\).
Do chiếc xe tải có chiều ngang 6 m đi vào vị trí chính giữa cổng nên xe sẽ chạm tường tại điểm A(3;6) khi đó chiều cao của xe là 6 m.
Vậy điều kiện để xe tải có thể đi vào cổng mà không chạm tường là 0 < h < 6.
Lời giải
Hướng dẫn giải:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.