Câu hỏi:
23/10/2024 169
Cho ba hình cầu tiếp xúc ngoài nhau từng đôi một và cùng tiếp xúc với một mặt phẳng. Các tiếp điểm của các hình cầu trên mặt phẳng lập thành tam giác có các cạnh bằng 4, 2 và 3. Tích bán kính của ba hình cầu trên bằng

Cho ba hình cầu tiếp xúc ngoài nhau từng đôi một và cùng tiếp xúc với một mặt phẳng. Các tiếp điểm của các hình cầu trên mặt phẳng lập thành tam giác có các cạnh bằng 4, 2 và 3. Tích bán kính của ba hình cầu trên bằng
Quảng cáo
Trả lời:
Gọi O1, O2, O3 lần lượt là tâm của 3 mặt cầu và A, B, C lần lượt là hình chiếu của 3 tâm trên mặt phẳng (α) đã cho.
Không mất tính tổng quát, gọi bán kính của 3 mặt cầu lần lượt là R1, R2, R3.
Dễ thấy \({O_1}A \bot (\alpha ),{O_2}B \bot (\alpha ),{O_3}C \bot (\alpha ){\rm{ v\`a }}{O_1}A = {R_1},{O_2}B = {R_2},{O_3}C = {R_3}{\rm{. }}\)
Xét hình thang vuông O1ABO2 vuông tại A và B.
Từ \({O_2}\) kẻ \({O_2}H \bot A{O_1}\)
Suy ra \(AH = {R_2},{O_1}H = \left| {{R_1} - {R_2}} \right|,{O_2}H = AB,{O_1}{O_2} = {R_1} + {R_2}\)
Xét tam giác vuông \({O_1}{O_2}H\) ta có \({O_1}O_2^2 = {O_1}{H^2} + A{B^2}\) hay \({\left( {{R_1} + {R_2}} \right)^2} = {\left( {{R_1} - {R_2}} \right)^2} + A{B^2}\).
Suy ra \({R_1}.{R_2} = \frac{{A{B^2}}}{4}\).
Tương tự \({R_2}.{R_3} = \frac{{B{C^2}}}{4},{R_1}.{R_3} = \frac{{A{C^2}}}{4}\).
Do đó \[{\left( {{R_1}.{R_2}.{R_3}} \right)^2} = \frac{{{3^2}{{.2}^2}{{.4}^2}}}{{4.4.4}} = 9{\rm{ hay }}{R_1}.{R_2}.{R_3} = 3.{\rm{ }}\]
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục tọa độ như hình vẽ. Parabol có phương trình dạng \(y = a{x^2} + bx\).
Vì chiếc cổng hình parabol có chiều rộng 12 m và chiều cao, theo hình vẽ ta có parabol đi qua các điểm (12;0) và (6;8), suy ra: \(\left\{ {\begin{array}{*{20}{l}}{144a + 12b = 0}\\{36a + 6b = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - \frac{2}{9}}\\{b = \frac{8}{3}}\end{array}.} \right.} \right.\)
Suy ra parabol có phương trình \(y = - \frac{2}{9}{x^2} + \frac{8}{3}\).
Do chiếc xe tải có chiều ngang 6 m đi vào vị trí chính giữa cổng nên xe sẽ chạm tường tại điểm A(3;6) khi đó chiều cao của xe là 6 m.
Vậy điều kiện để xe tải có thể đi vào cổng mà không chạm tường là 0 < h < 6.
Lời giải
Hướng dẫn giải:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.