Câu hỏi:

23/10/2024 153 Lưu

Cho số phức \({z_1}\) thỏa mãn \(|z - 1 - 2i{|^2} - |z + 1{|^2} = 1\) và số phức \({z_2}\) thỏa mãn \(|z - 3 - 3i| = 2\). Biết \(\left| {{z_1} - {z_2}} \right|\) đạt giá trị nhỏ nhất.

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau
Cho số phức \({z_1}\) thỏa mãn \(|z - 1 - 2i{|^2} - |z + 1{|^2} = 1\) và số phức \({z_2}\) thỏa mãn \(|z - 3 - 3i| = 2\). Biết \(\left| {{z_1} - {z_2}} \right|\) đạt giá trị nhỏ nhất. (ảnh 1)

Tổng phần thực của hai số phức \({z_1}\) và \({z_2}\) bằng _______.

Giá trị nhỏ nhất của \(\left| {{z_1} - {z_2}} \right|\) bằng _______.

Môđul của số phức \({z_1}\) bằng _______.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án

Tổng phần thực của hai số phức \({z_1}\) và \({z_2}\) bằng \(\frac{{27 - 8\sqrt 2 }}{8}\).

Giá trị nhỏ nhất của \(\left| {{z_1} - {z_2}} \right|\) bằng \(\frac{{21\sqrt 2  - 16}}{8}\).

Môđul của số phức \({z_1}\) bằng \(\frac{{3\sqrt 2 }}{8}\).

Giải thích

Gọi \(M(x;y)\) là điểm biểu diễn số phức \({z_1}\).

Khi đó \(|z - 1 - 2i{|^2} - |z + 1{|^2} = 1\)

\( \Leftrightarrow {(x - 1)^2} + {(y - 2)^2} - {(x + 1)^2} - {y^2} = 1 \Leftrightarrow 4x + 4y - 3 = 0.\)

\( \Rightarrow \) Tập hợp điểm biểu diễn số phức \({z_1}\) là đường thẳng \(\Delta :4x + 4y - 3 = 0\).

Gọi \(N(a;b)\) là điểm biểu diển số phức \({z_2}\). Khi đó \(|z - 3 - 3i| = 2 \Leftrightarrow {(a - 3)^2} + {(b - 3)^2} = 4\).

Hay tập hợp điểm \(N\) trong mặt phẳng Oxy là đường tròn \((C):{(x - 3)^2} + {(y - 3)^2} = 4\) có tâm \(I(3;3)\), bán kính \(R = 2\).

Cho số phức \({z_1}\) thỏa mãn \(|z - 1 - 2i{|^2} - |z + 1{|^2} = 1\) và số phức \({z_2}\) thỏa mãn \(|z - 3 - 3i| = 2\). Biết \(\left| {{z_1} - {z_2}} \right|\) đạt giá trị nhỏ nhất. (ảnh 2)

Ta có \(d(I;\Delta ) = \frac{{21\sqrt 2 }}{8} > R \Rightarrow (\Delta )\) không cắt đường tròn \((C)\).

Mặt khác, \(MN = \left| {{z_1} - {z_2}} \right|\). Khi đó, \(M{N_{\min }} \Leftrightarrow MN = d(I;\Delta ) - R = \frac{{21\sqrt 2 }}{8} - 2 = \frac{{21\sqrt 2  - 16}}{8}.\)

Đường thẳng MN đi qua điểm \(I(3;3)\) và vuông góc với \(\Delta \) có phương trình:

\((x - 3) - (y - 3) = 0 \Leftrightarrow x - y = 0.{\rm{ }}\)

Ta có: \(M = \Delta  \cap MN \Rightarrow \) Tọa độ điểm \(M\) là nghiệm của hệ phương trình

\(\left\{ {\begin{array}{*{20}{l}}{x - y = 0}\\{4x + 4y - 3 = 0}\end{array} \Leftrightarrow x = y = \frac{3}{8} \Rightarrow \left| {{z_1}} \right| = \frac{{3\sqrt 2 }}{8}} \right.\)

Mặt khác, \(N = (C) \cap MN \Rightarrow \) Tọa độ điểm \(N\) là nghiệm của hệ phương trình

\(\left\{ {\begin{array}{*{20}{c}}{x - y = 0}\\{{{(x - 3)}^2} + {{(y - 3)}^2} = 4}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = y = 3 + \sqrt 2 }\\{x = y = 3 - \sqrt 2 }\end{array}} \right.} \right.\)

Tính độ dài MN ta được \(N(3 + \sqrt 2 ;3 - \sqrt 2 )\) thỏa mãn \(M{N_{\min }}\).

Vậy \({x_M} + {x_N} = \frac{{27 - 8\sqrt 2 }}{8}\).

 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi a là gia tốc của chất điểm.

Theo định luật II Newton ta có: \(a = \frac{F}{m} \Rightarrow {F_C} = ma = mv' = m\frac{{dv}}{{dt}}\).

Mà \({F_C} =  - rv\) nên \( - rv = m\frac{{dv}}{{dt}} \Rightarrow \frac{{dv}}{v} =  - \frac{r}{m}dt\)

\( \Leftrightarrow \int_{{v_0}}^v {\frac{{dv}}{v}}  = \int_0^t  -  \frac{r}{m}dt \Leftrightarrow \ln \frac{v}{{{v_0}}} =  - \frac{r}{m}t \Rightarrow v = {v_0}.{e^{ - \frac{r}{m}t}} = 2,5\,\,(m/s).\)

 Chọn D

Lời giải

Giải thích

Ta có: \(f(1) = n\).

\(\mathop {\lim }\limits_{x \to 1} f(x) = \mathop {\lim }\limits_{x \to 1} \frac{{x + 3 - {m^2}}}{{(x - 1)(\sqrt {x + 3}  + m)}}{\rm{. }}\)

Hàm số liên tục tại \(x = 1 \Leftrightarrow \mathop {\lim }\limits_{x \to 1} f(x) = f(1) \Leftrightarrow n = \mathop {\lim }\limits_{x \to 1} \frac{{x + 3 - {m^2}}}{{(x - 1)(\sqrt {x + 3}  + m)}}\)(1)

\(\mathop {\lim }\limits_{x \to 1} f(x)\) tồn tại khi 1 là nghiệm của phương trình \(x + 3 - {m^2} = 0\)

\( \Leftrightarrow 1 + 3 - {m^2} = 0 \Rightarrow \left[ {\begin{array}{*{20}{l}}{m = 2}\\{m =  - 2}\end{array}} \right.\).

+ Khi \(m = 2\) thì (1) \( \Rightarrow n = \mathop {\lim }\limits_{x \to 1} \frac{{x - 1}}{{(x - 1)(\sqrt {x + 3}  + 2)}} \Rightarrow n = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt {x + 3}  + 2}} \Rightarrow n = \frac{1}{4}\).

+ Khi \(m =  - 2\) thì (1) \( \Rightarrow n = \mathop {\lim }\limits_{x \to 1} \frac{1}{{\sqrt {x + 3}  - 2}}\) suy ra không tồn tại \(n\).

Vậy \(m + n = 2 + \frac{1}{4} = \frac{9}{4}\).

 Chọn D

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP