Câu hỏi:
23/10/2024 116Cho số phức \({z_1}\) thỏa mãn \(|z - 1 - 2i{|^2} - |z + 1{|^2} = 1\) và số phức \({z_2}\) thỏa mãn \(|z - 3 - 3i| = 2\). Biết \(\left| {{z_1} - {z_2}} \right|\) đạt giá trị nhỏ nhất.
Tổng phần thực của hai số phức \({z_1}\) và \({z_2}\) bằng _______.
Giá trị nhỏ nhất của \(\left| {{z_1} - {z_2}} \right|\) bằng _______.
Môđul của số phức \({z_1}\) bằng _______.
Quảng cáo
Trả lời:
Đáp án
Tổng phần thực của hai số phức \({z_1}\) và \({z_2}\) bằng \(\frac{{27 - 8\sqrt 2 }}{8}\).
Giá trị nhỏ nhất của \(\left| {{z_1} - {z_2}} \right|\) bằng \(\frac{{21\sqrt 2 - 16}}{8}\).
Môđul của số phức \({z_1}\) bằng \(\frac{{3\sqrt 2 }}{8}\).
Giải thích
Gọi \(M(x;y)\) là điểm biểu diễn số phức \({z_1}\).
Khi đó \(|z - 1 - 2i{|^2} - |z + 1{|^2} = 1\)
\( \Leftrightarrow {(x - 1)^2} + {(y - 2)^2} - {(x + 1)^2} - {y^2} = 1 \Leftrightarrow 4x + 4y - 3 = 0.\)
\( \Rightarrow \) Tập hợp điểm biểu diễn số phức \({z_1}\) là đường thẳng \(\Delta :4x + 4y - 3 = 0\).
Gọi \(N(a;b)\) là điểm biểu diển số phức \({z_2}\). Khi đó \(|z - 3 - 3i| = 2 \Leftrightarrow {(a - 3)^2} + {(b - 3)^2} = 4\).
Hay tập hợp điểm \(N\) trong mặt phẳng Oxy là đường tròn \((C):{(x - 3)^2} + {(y - 3)^2} = 4\) có tâm \(I(3;3)\), bán kính \(R = 2\).
Ta có \(d(I;\Delta ) = \frac{{21\sqrt 2 }}{8} > R \Rightarrow (\Delta )\) không cắt đường tròn \((C)\).
Mặt khác, \(MN = \left| {{z_1} - {z_2}} \right|\). Khi đó, \(M{N_{\min }} \Leftrightarrow MN = d(I;\Delta ) - R = \frac{{21\sqrt 2 }}{8} - 2 = \frac{{21\sqrt 2 - 16}}{8}.\)
Đường thẳng MN đi qua điểm \(I(3;3)\) và vuông góc với \(\Delta \) có phương trình:
\((x - 3) - (y - 3) = 0 \Leftrightarrow x - y = 0.{\rm{ }}\)
Ta có: \(M = \Delta \cap MN \Rightarrow \) Tọa độ điểm \(M\) là nghiệm của hệ phương trình
\(\left\{ {\begin{array}{*{20}{l}}{x - y = 0}\\{4x + 4y - 3 = 0}\end{array} \Leftrightarrow x = y = \frac{3}{8} \Rightarrow \left| {{z_1}} \right| = \frac{{3\sqrt 2 }}{8}} \right.\)
Mặt khác, \(N = (C) \cap MN \Rightarrow \) Tọa độ điểm \(N\) là nghiệm của hệ phương trình
\(\left\{ {\begin{array}{*{20}{c}}{x - y = 0}\\{{{(x - 3)}^2} + {{(y - 3)}^2} = 4}\end{array} \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = y = 3 + \sqrt 2 }\\{x = y = 3 - \sqrt 2 }\end{array}} \right.} \right.\)
Tính độ dài MN ta được \(N(3 + \sqrt 2 ;3 - \sqrt 2 )\) thỏa mãn \(M{N_{\min }}\).
Vậy \({x_M} + {x_N} = \frac{{27 - 8\sqrt 2 }}{8}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Gọi a là gia tốc của chất điểm.
Theo định luật II Newton ta có: \(a = \frac{F}{m} \Rightarrow {F_C} = ma = mv' = m\frac{{dv}}{{dt}}\).
Mà \({F_C} = - rv\) nên \( - rv = m\frac{{dv}}{{dt}} \Rightarrow \frac{{dv}}{v} = - \frac{r}{m}dt\)
\( \Leftrightarrow \int_{{v_0}}^v {\frac{{dv}}{v}} = \int_0^t - \frac{r}{m}dt \Leftrightarrow \ln \frac{v}{{{v_0}}} = - \frac{r}{m}t \Rightarrow v = {v_0}.{e^{ - \frac{r}{m}t}} = 2,5\,\,(m/s).\)
Chọn D
Lời giải
Đáp án
Hai bạn An và Bình chơi trò gieo xúc xắc với nhau. Luật chơi như sau: hai bạn có 3 con xúc xắc, các bạn gieo 3 con xúc xắc cùng lúc, lấy con xúc xắc có số chấm nhiều nhất qua một bên (nếu có nhiều hơn 1 con xúc xắc cùng ra số chấm nhiều nhất thì bỏ ra 1 con xúc xắc bất kì trong đó), sau đó gieo 2 con xúc xắc còn lại cùng lúc, lấy con xúc xắc có số chấm nhiều nhất qua một bên và gieo con xúc xắc còn lại, sau đó cộng số chấm trên 3 con xúc xắc đó với nhau, bạn nào có tổng số chấm cao hơn thì chiến thắng. Bạn An chơi trước, tổng số chấm trên 3 con xúc xắc bạn gieo được là 16. Xác suất bạn Bình giành chiến thắng là (1) __ 7,5% __ (viết kết quả dưới dạng phần trăm, làm tròn đến chữ số thập phân thứ nhất).
Giải thích
Tổng số chấm tối đa có thể thu được là 6.3 = 18.
Để bạn Bình giành chiến thắng thì tổng số chấm bạn thu được phải là 17hoặc 18.
TH1. Tổng số chấm là 18.
Để tổng số chấm là 18 thì con xúc xắc có số chấm nhiều nhất trong 3 lần gieo đều phải bằng 6.
Xác suất xảy ra là: \(\left[ {1 - {{\left( {\frac{5}{6}} \right)}^3}} \right].\left[ {1 - {{\left( {\frac{5}{6}} \right)}^2}} \right].\frac{1}{6} = \frac{{1001}}{{46656}}\).
TH2. Tổng số chấm là 17.
Để tổng số chấm là 17 thì con xúc xắc có số chấm nhiều nhất trong 2 lần gieo bằng 6, trong lần gieo còn lại bằng 5.
+ Số chấm cao nhất trong 3 lần gieo lần lượt là 6, 6, 5. Xác suất xảy ra là:
\(\left[ {1 - {{\left( {\frac{5}{6}} \right)}^3}} \right].\left[ {1 - {{\left( {\frac{5}{6}} \right)}^2}} \right].\frac{1}{6} = \frac{{1001}}{{46656}}\).
+ Số chấm cao nhất trong 3 lần gieo lần lượt là 6, 5, 6. Xác suất xảy ra là:
\(\left[ {1 - {{\left( {\frac{5}{6}} \right)}^3}} \right].\left( {C_2^1.\frac{1}{6}.\frac{4}{6} + \frac{1}{6}.\frac{1}{6}} \right).\frac{1}{6} = \frac{{91}}{{5184}}\).
+ Số chấm cao nhất trong 3 lần gieo lần lượt là 5, 6, 6. Xác suất xảy ra là:
\(\left[ {C_3^1.\frac{1}{6}.{{\left( {\frac{4}{6}} \right)}^2} + C_3^2.{{\left( {\frac{1}{6}} \right)}^2}.\frac{4}{6} + C_3^3.{{\left( {\frac{1}{6}} \right)}^3}} \right].\left[ {1 - {{\left( {\frac{5}{6}} \right)}^2}} \right].\frac{1}{6} = \frac{{671}}{{46656}}\) .
Xác suất để bạn Bình giành chiến thắng là:
\(\frac{{1001}}{{46656}} + \frac{{1001}}{{46656}} + \frac{{91}}{{5184}} + \frac{{671}}{{46656}} = \frac{{97}}{{1296}} \approx 7,5\% \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
ĐGTD ĐH Bách khoa - Đọc hiểu chủ đề môi trường - Đề 1
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 4)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận