Câu hỏi:
23/10/2024 158
(Kéo thả hoặc click vào để điền)

Cho các số tự nhiên: 0, 1, 2, 3, 4.
a) Lập được số các số tự nhiên gồm cả năm chữ số trên là .... .
b) Lập được số các số tự nhiên gồm cả năm chữ số trên và chữ số 3 đứng ở chính giữa là ...
(Kéo thả hoặc click vào để điền)
Cho các số tự nhiên: 0, 1, 2, 3, 4.
a) Lập được số các số tự nhiên gồm cả năm chữ số trên là .... .
b) Lập được số các số tự nhiên gồm cả năm chữ số trên và chữ số 3 đứng ở chính giữa là ...Quảng cáo
Trả lời:
a) Lập được số các số tự nhiên gồm cả năm chữ số trên là 96 .
b) Lập được số các số tự nhiên gồm cả năm chữ số trên và chữ số 3 đứng ở chính giữa là 18Hướng dẫn giải:
Cách 1
a. Số tự nhiên cần lập có dạng \(\overline {abcde} \,\,(a \ne 0)\)
Trong đó chữ số a có 4 cách chọn.
Chữ số b có 4 cách chọn.
Chữ số c có 3 cách chọn.
Chữ số d có 2 cách chọn.
Chữ số e có 1 cách chọn.
Nên có tất cả 4.4.3.2.1 = 96 số thỏa mãn yêu cầu đề bài.
b. Số tự nhiên cần lập có dạng \(\overline {ab3de} (a \ne 0)\).
Chữ số a có 3 cách chọn.
Chữ số b có 3 cách chọn.
Chữ số d có 2 cách chọn.
Chữ sô e có 1 cách chọn.
Vậy thành lập được tất cả 3.3.2=18 số có 5 chữ số khác nhau mà số 3 đứng chính giữa từ các số trên.
Cách 2.
a. Mỗi số có 5 chữ số khác nhau được thành lập từ các số trên là một hoán vị của {0;1;2;3;4}.
Các số có dạng \(\overline {0abcd} \) mà a;b;c;d khác nhau là một hoán vị của các số {1;2;3;4}.
Nên 5 có tất cả 5! − 4! = 96 số có 5 chữ số khác nhau được thành lập từ các số trên.
b. Tương tự phần a; các số có dạng \[\overline {ab3de} \] bằng với số hoán vị của 4 số {0;1;2;4}.
Các số có dạng \[\overline {0a3cd} \] bằng số hoán vị của 3 số {1;2;4}.
Nên có tất cả 4! - 3!=18 số có 5 chữ số khác nhau có số 3 đứng giữa được thành lập từ các số trên.
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục tọa độ như hình vẽ. Parabol có phương trình dạng \(y = a{x^2} + bx\).
Vì chiếc cổng hình parabol có chiều rộng 12 m và chiều cao, theo hình vẽ ta có parabol đi qua các điểm (12;0) và (6;8), suy ra: \(\left\{ {\begin{array}{*{20}{l}}{144a + 12b = 0}\\{36a + 6b = 8}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{a = - \frac{2}{9}}\\{b = \frac{8}{3}}\end{array}.} \right.} \right.\)
Suy ra parabol có phương trình \(y = - \frac{2}{9}{x^2} + \frac{8}{3}\).
Do chiếc xe tải có chiều ngang 6 m đi vào vị trí chính giữa cổng nên xe sẽ chạm tường tại điểm A(3;6) khi đó chiều cao của xe là 6 m.
Vậy điều kiện để xe tải có thể đi vào cổng mà không chạm tường là 0 < h < 6.
Lời giải
Hướng dẫn giải:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.