Câu hỏi:

24/10/2024 147

Trong không gian Oxyz, cho các điểm \(A(1;0;0),B(0;1;0)\). Mặt phẳng đi qua các điểm A, B đồng thời cắt tia Oz tại \(C\) sao cho tứ diện OABC có thể tích bằng \(\frac{1}{6}\) có phương trình dạng \(x + ay + bz + c = 0\). Khi đó giá trị của biểu thức \(a + 3b - 2c\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi điểm \(C(0;0;c)\) thuộc tia \(Oz,\,\,c > 0\).

Mặt phẳng \((P)\) đi qua các điểm A, B đồng thời cắt tia Oz tại \(C\) có dạng \(\frac{x}{1} + \frac{y}{1} + \frac{z}{c} = 1\).

Tứ diện OABC có thể tích bằng \(\frac{1}{6} \Rightarrow {V_{OABC}} = \frac{1}{6}OA.OB.OC = \frac{1}{6}\)

\( \Leftrightarrow \frac{1}{6}\).1.1.\(c = \frac{1}{6} \Leftrightarrow c = 1\).

Suy ra \((P)\) có phương trình \(\frac{x}{1} + \frac{y}{1} + \frac{z}{1} = 1 \Leftrightarrow x + y + z - 1 = 0 \Rightarrow a = 1,b = 1,c =  - 1\).

Vậy \(a + 3b - 2c = 6\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải thích

Đơn vị của năng lượng liên kết là J hoặc MeV, trong đó: 1MeV=1,6.10-13J.

Chọn A, B

Lời giải

Công ty X muốn thiết kế các hộp chứa sản phẩm dạng hình trụ có nắp với dung tích bằng 330 cm3, bán kính đáy x cm, chiều cao ℎ cm. Khi thiết kế, công ty X luôn đặt mục tiêu sao cho vật liệu làm vỏ hộp là ít nhất, nghĩa là diện tích toàn phần hình trụ là nhỏ nhất.

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau :

Để công ty X tiết kiệm được vật liệu nhất thì bán kính x bằng 3,745 cm và chiều cao ℎ bằng 7,490 cm.

(Kết quả làm tròn đến chữ số thập phân thứ ba).

Giải thích

Media VietJack

Ta có: \(V = \pi {x^2}h\).

Theo giả thiết thể tích hình trụ bằng \(330\;{\rm{c}}{{\rm{m}}^3}\) nên \(V = 330 \Leftrightarrow \pi {x^2}h = 330 \Leftrightarrow h = \frac{{330}}{{\pi {x^2}}}\)

Chi phí sản xuất là thấp nhất khi diện tích toàn phần hình trụ nhỏ nhất.

Ta có: \({S_{tp}} = {S_{xq}} + 2.{S_d} = 2\pi xh + 2\pi {x^2} = 2\pi \left( {{x^2} + \frac{{330}}{{\pi x}}} \right)\).

Áp dụng bất đẳng thức Cauchy cho 3 số dương ta có:

\({x^2} + \frac{{330}}{{\pi x}} = {x^2} + \frac{{165}}{{\pi x}} + \frac{{165}}{{\pi x}} \ge 3\sqrt[3]{{\frac{{27225.{x^2}}}{{{\pi ^2}.{x^2}}}}} = 3\sqrt[3]{{\frac{{27225}}{{{\pi ^2}}}}}\)

Dấu bằng xảy ra khi \({x^2} = \frac{{165}}{{\pi x}} \Leftrightarrow x = \sqrt[3]{{\frac{{165}}{\pi }}} \approx 3,745.\)

Để công ty X tiết kiệm được vật liệu nhất cần sản xuất hộp với kích thước \(h \approx 7,490\;{\rm{cm}}\) và \(x \approx 3,745\;{\rm{cm}}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP