Câu hỏi:

24/10/2024 358 Lưu

Cho số thực \(a\) và hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{2x}&{{\rm{ khi }}x \le 1}\\{a\left( {x - 2{x^2}} \right)}&{{\rm{ khi }}x > 1}\end{array}} \right.\) liên tục trên \(\mathbb{R}\). Tính \(\int_0^2 f (x){\rm{dx}}\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Vì hàm số liên tục trên R nên \(\mathop {\lim }\limits_{x \to {1^ + }} f(x) = \mathop {\lim }\limits_{x \to {1^ - }} f(x) = f(1)\)

\( \Leftrightarrow \mathop {\lim }\limits_{x \to {1^ + }} \left[ {a\left( {x - 2{x^2}} \right)} \right] = \mathop {\lim }\limits_{x \to {1^ - }} (2x) \Leftrightarrow a =  - 2.\)

Ta có \(\int\limits_0^2 {f(x){\rm{d}}x}  = \int\limits_0^1 {f(x){\rm{d}}x}  + \int\limits_1^2 {f(x){\rm{d}}x}  = \int\limits_0^1 {2x\;{\rm{d}}x}  + \int\limits_1^2 { - 2\left( {x - 2{x^2}} \right){\rm{d}}x}  = \frac{{22}}{3}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải thích

Đơn vị của năng lượng liên kết là J hoặc MeV, trong đó: 1MeV=1,6.10-13J.

Chọn A, B

Lời giải

Công ty X muốn thiết kế các hộp chứa sản phẩm dạng hình trụ có nắp với dung tích bằng 330 cm3, bán kính đáy x cm, chiều cao ℎ cm. Khi thiết kế, công ty X luôn đặt mục tiêu sao cho vật liệu làm vỏ hộp là ít nhất, nghĩa là diện tích toàn phần hình trụ là nhỏ nhất.

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau :

Để công ty X tiết kiệm được vật liệu nhất thì bán kính x bằng 3,745 cm và chiều cao ℎ bằng 7,490 cm.

(Kết quả làm tròn đến chữ số thập phân thứ ba).

Giải thích

Media VietJack

Ta có: \(V = \pi {x^2}h\).

Theo giả thiết thể tích hình trụ bằng \(330\;{\rm{c}}{{\rm{m}}^3}\) nên \(V = 330 \Leftrightarrow \pi {x^2}h = 330 \Leftrightarrow h = \frac{{330}}{{\pi {x^2}}}\)

Chi phí sản xuất là thấp nhất khi diện tích toàn phần hình trụ nhỏ nhất.

Ta có: \({S_{tp}} = {S_{xq}} + 2.{S_d} = 2\pi xh + 2\pi {x^2} = 2\pi \left( {{x^2} + \frac{{330}}{{\pi x}}} \right)\).

Áp dụng bất đẳng thức Cauchy cho 3 số dương ta có:

\({x^2} + \frac{{330}}{{\pi x}} = {x^2} + \frac{{165}}{{\pi x}} + \frac{{165}}{{\pi x}} \ge 3\sqrt[3]{{\frac{{27225.{x^2}}}{{{\pi ^2}.{x^2}}}}} = 3\sqrt[3]{{\frac{{27225}}{{{\pi ^2}}}}}\)

Dấu bằng xảy ra khi \({x^2} = \frac{{165}}{{\pi x}} \Leftrightarrow x = \sqrt[3]{{\frac{{165}}{\pi }}} \approx 3,745.\)

Để công ty X tiết kiệm được vật liệu nhất cần sản xuất hộp với kích thước \(h \approx 7,490\;{\rm{cm}}\) và \(x \approx 3,745\;{\rm{cm}}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP