Câu hỏi:
24/10/2024 69Trong không gian Oxyz, cho ba điểm \(M(6;0;0),N(0;6;0),P(0;0;6)\). Hai mặt cầu có phương trình \(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} - 2x - 2y + 1 = 0\) và \(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} - 8x + 2y + 2z + 1 = 0\) cắt nhau theo giao tuyến là đường tròn \((C)\). Có bao nhiêu mặt cầu có tâm thuộc mặt phẳng chứa \((C)\) và tiếp xúc với ba đường thẳng MN, NP, PM?
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Gọi \((\alpha )\) là mặt phẳng chứa \((C)\) và \(I\) là tâm mặt cầu cần tìm.
Trừ theo vế hai phương trình mặt cầu ta được \((\alpha ):6x - 4y - 2z = 0 \Leftrightarrow 3x - 2y - z = 0\).
Mặt cầu tiếp xúc với ba cạnh của tam giác MNP suy ra tâm mặt cầu thuộc đường thẳng vuông góc với \((MNP)\) và đi qua tâm đường tròn nội tiếp hoặc bằng tiếp tam giác MNP.
Dễ thấy \((\alpha ) \bot (MNP)\) và \((\alpha )\) qua \(J(2;2;2)\) là tâm đường tròn nội tiếp tam giác đều MNP nên I thuộc đường thẳng qua \(J\) và vuông góc \((MNP)\).
Vậy có vô số mặt cầu thỏa mãn yêu cầu bài toán.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Phát biểu sau đúng hay sai?
Axit lactic vừa có tính chất của axit, vừa có tính chất của ancol.
Câu 4:
Phần tư duy khoa học / giải quyết vấn đề
về câu hỏi!