Cho hàm số bậc ba \(y = f(x)\) liên tục trên \(\mathbb{R}\) và có đồ thị như hình vẽ.

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau :
Đồ thị hàm số \(y = f(x + a)\) luôn có _______ điểm cực trị.
Đồ thị hàm số \(y = f(|x|)\) có _______ điểm cực trị.
Có _______ giá trị nguyên của tham số \(m\) để phương trình \(f(\cos x) = m\) có 3 nghiệm phân biệt thuộc khoảng \(\left( {0;\frac{{3\pi }}{2}} \right]\).
Quảng cáo
Trả lời:
Đồ thị hàm số \(y = f(x + a)\) luôn có 2 điểm cực trị.
Đồ thị hàm số \(y = f(|x|)\) có 3 điểm cực trị.
Có 1 giá trị nguyên của tham số \(m\) để phương trình \(f(\cos x) = m\) có 3 nghiệm phân biệt thuộc khoảng \(\left( {0;\frac{{3\pi }}{2}} \right]\).
Giải thích
+) Tịnh tiến đồ thị hàm số \(y = f(x)\) sang trái \(a\) đơn vị ta có đồ thị hàm số \(y = f(x + a)\). Vậy số điểm cực trị của đồ thị hàm số \(y = f(x + a)\) bằng số điểm cực trị của đồ thị hàm số \(y = f(x)\). Hay đồ thị hàm số \(y = f(x + a)\) luôn có 2 điểm cực trị.
+) Số điểm cực trị đồ thị hàm số \(y = f(|x|)\) bằng \(2k + 1\) với \(k\) là số điểm cực trị dương của hàm số \(y = f(x)\). Hay đồ thị hàm số \(y = f(|x|)\) có 3 điểm cực trị.
+) Đặt \(t = \cos x\) thì \(x \in \left( {0;\frac{{3\pi }}{2}} \right] \Rightarrow t \in [ - 1;1)\)
Với một nghiệm \(t \in ( - 1;0]\) cho tương ứng được 2 nghiệm \(x \in \left[ {\frac{\pi }{2};\frac{{3\pi }}{2}} \right]\backslash \{ \pi \} \)
Với một nghiệm \(t \in (0;1) \cup \{ - 1\} \) cho tương ứng 1 nghiệm \(x \in \left( {0;\frac{\pi }{2}} \right) \cup \{ \pi \} \)
Do đó \(f(\cos x) = m\) có 3 nghiệm phân biệt thuộc khoảng \(\left( {0;\frac{{3\pi }}{2}} \right]\)
\( \Leftrightarrow f(t) = m\) có 2 nghiệm \({t_1} \in ( - 1;0]\) và \({t_2} \in (0;1) \cup \{ - 1\} \)
Dựa vào đồ thị, ycbt \( \Leftrightarrow m \in (0;2)\).
Vì \(m \in \mathbb{Z}\) nên \(m = 1\) hay có 1 giá trị nguyên của tham số \(m\) thỏa mãn.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
C. m/s.
D. u.
Lời giải
Giải thích
Đơn vị của năng lượng liên kết là J hoặc MeV, trong đó: 1MeV=1,6.10-13J.
Chọn A, B
Câu 2
Lời giải
Giải thích
Theo thông tin bài: “...Cấu trúc của một operon Lac gồm có vùng vận hành (operator), vùng khởi động (promoter), các gen cấu trúc Z, Y, A. Ngoài ra, còn có gen điều hòa có vai trò quan trọng trong điều hòa hoạt động gen, nhưng không nằm trong cấu trúc operon Lac.”
Chọn C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

