Câu hỏi:

24/10/2024 100

Cho các số thực \(a,b,c \in (1; + \infty )\) thỏa mãn \({a^{10}} \le b\) và \({\log _a}b + 2{\log _b}c + 5{\log _c}a = 12\). Giá trị nhỏ nhất của biểu thức \(P = 2{\log _a}c + 5{\log _c}b + 10{\log _b}a\) bằng

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt \(x = {\log _a}b;\,\,y = {\log _b}{\rm{c}};\,\,z = {\log _c}a\). Ta có \(\left\{ {\begin{array}{*{20}{l}}{x,y,z > 0}\\{x.y.z = 1}\\{x \ge 10}\\{x + 2y + 5z = 12}\end{array}} \right.\)

Khi đó :

\(P = \frac{2}{z} + \frac{5}{y} + \frac{{10}}{x} = \frac{2}{z} + \frac{5}{y} + \frac{{100}}{x} - \frac{{90}}{x} \ge 3\sqrt[3]{{\frac{2}{z}.\frac{5}{y}.\frac{{100}}{x}}} - 9 = 30 - 9 = 21\)

Suy ra \[{P_{min}} = 21\;\] đạt được khi 

\(\left\{ {\begin{array}{*{20}{l}}{x.y.z = 1}\\{\frac{2}{z} = \frac{5}{y} = \frac{{100}}{x}}\\{x + 2y + 5z = 12}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = \frac{1}{2}}\\{z = \frac{1}{5}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{{\log }_a}b = 10}\\{{{\log }_b}c = \frac{1}{2}}\\{{{\log }_c}a = \frac{1}{5}}\end{array} \Rightarrow b = {c^2} = {a^{10}}} \right.} \right.} \right.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cấu trúc của một operon Lac KHÔNG bao gồm

Xem đáp án » 29/06/2024 4,442

Câu 2:

Enzyme chỉ hoạt động trong môi trường có 

Xem đáp án » 29/06/2024 998

Câu 3:

Phát biểu sau đúng hay sai?

Axit lactic vừa có tính chất của axit, vừa có tính chất của ancol. 

Xem đáp án » 29/06/2024 551

Câu 4:

Phần tư duy khoa học / giải quyết vấn đề

Đơn vị tính của năng lượng liên kết hạt nhân là gì? 

Xem đáp án » 29/06/2024 511

Câu 5:

Máu gồm hai thành phần chính là 

Xem đáp án » 29/06/2024 428

Câu 6:

Ý nào sau đây thể hiện rõ nhất nội dung chính của bài đọc trên? 

Xem đáp án » 29/06/2024 423

Câu 7:

Phần tư duy đọc hiểu

Mục đích chính của bài viết là gì?

Xem đáp án » 29/06/2024 403

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store