Câu hỏi:

24/10/2024 491

Cho các số thực \(a,b,c \in (1; + \infty )\) thỏa mãn \({a^{10}} \le b\) và \({\log _a}b + 2{\log _b}c + 5{\log _c}a = 12\). Giá trị nhỏ nhất của biểu thức \(P = 2{\log _a}c + 5{\log _c}b + 10{\log _b}a\) bằng

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt \(x = {\log _a}b;\,\,y = {\log _b}{\rm{c}};\,\,z = {\log _c}a\). Ta có \(\left\{ {\begin{array}{*{20}{l}}{x,y,z > 0}\\{x.y.z = 1}\\{x \ge 10}\\{x + 2y + 5z = 12}\end{array}} \right.\)

Khi đó :

\(P = \frac{2}{z} + \frac{5}{y} + \frac{{10}}{x} = \frac{2}{z} + \frac{5}{y} + \frac{{100}}{x} - \frac{{90}}{x} \ge 3\sqrt[3]{{\frac{2}{z}.\frac{5}{y}.\frac{{100}}{x}}} - 9 = 30 - 9 = 21\)

Suy ra \[{P_{min}} = 21\;\] đạt được khi 

\(\left\{ {\begin{array}{*{20}{l}}{x.y.z = 1}\\{\frac{2}{z} = \frac{5}{y} = \frac{{100}}{x}}\\{x + 2y + 5z = 12}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = \frac{1}{2}}\\{z = \frac{1}{5}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{{\log }_a}b = 10}\\{{{\log }_b}c = \frac{1}{2}}\\{{{\log }_c}a = \frac{1}{5}}\end{array} \Rightarrow b = {c^2} = {a^{10}}} \right.} \right.} \right.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giải thích

Đơn vị của năng lượng liên kết là J hoặc MeV, trong đó: 1MeV=1,6.10-13J.

Chọn A, B

Lời giải

Công ty X muốn thiết kế các hộp chứa sản phẩm dạng hình trụ có nắp với dung tích bằng 330 cm3, bán kính đáy x cm, chiều cao ℎ cm. Khi thiết kế, công ty X luôn đặt mục tiêu sao cho vật liệu làm vỏ hộp là ít nhất, nghĩa là diện tích toàn phần hình trụ là nhỏ nhất.

Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau :

Để công ty X tiết kiệm được vật liệu nhất thì bán kính x bằng 3,745 cm và chiều cao ℎ bằng 7,490 cm.

(Kết quả làm tròn đến chữ số thập phân thứ ba).

Giải thích

Media VietJack

Ta có: \(V = \pi {x^2}h\).

Theo giả thiết thể tích hình trụ bằng \(330\;{\rm{c}}{{\rm{m}}^3}\) nên \(V = 330 \Leftrightarrow \pi {x^2}h = 330 \Leftrightarrow h = \frac{{330}}{{\pi {x^2}}}\)

Chi phí sản xuất là thấp nhất khi diện tích toàn phần hình trụ nhỏ nhất.

Ta có: \({S_{tp}} = {S_{xq}} + 2.{S_d} = 2\pi xh + 2\pi {x^2} = 2\pi \left( {{x^2} + \frac{{330}}{{\pi x}}} \right)\).

Áp dụng bất đẳng thức Cauchy cho 3 số dương ta có:

\({x^2} + \frac{{330}}{{\pi x}} = {x^2} + \frac{{165}}{{\pi x}} + \frac{{165}}{{\pi x}} \ge 3\sqrt[3]{{\frac{{27225.{x^2}}}{{{\pi ^2}.{x^2}}}}} = 3\sqrt[3]{{\frac{{27225}}{{{\pi ^2}}}}}\)

Dấu bằng xảy ra khi \({x^2} = \frac{{165}}{{\pi x}} \Leftrightarrow x = \sqrt[3]{{\frac{{165}}{\pi }}} \approx 3,745.\)

Để công ty X tiết kiệm được vật liệu nhất cần sản xuất hộp với kích thước \(h \approx 7,490\;{\rm{cm}}\) và \(x \approx 3,745\;{\rm{cm}}\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP