Câu hỏi:
24/10/2024 166Cho các số thực \(a,b,c \in (1; + \infty )\) thỏa mãn \({a^{10}} \le b\) và \({\log _a}b + 2{\log _b}c + 5{\log _c}a = 12\). Giá trị nhỏ nhất của biểu thức \(P = 2{\log _a}c + 5{\log _c}b + 10{\log _b}a\) bằng
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
Đặt \(x = {\log _a}b;\,\,y = {\log _b}{\rm{c}};\,\,z = {\log _c}a\). Ta có \(\left\{ {\begin{array}{*{20}{l}}{x,y,z > 0}\\{x.y.z = 1}\\{x \ge 10}\\{x + 2y + 5z = 12}\end{array}} \right.\)
Khi đó :
\(P = \frac{2}{z} + \frac{5}{y} + \frac{{10}}{x} = \frac{2}{z} + \frac{5}{y} + \frac{{100}}{x} - \frac{{90}}{x} \ge 3\sqrt[3]{{\frac{2}{z}.\frac{5}{y}.\frac{{100}}{x}}} - 9 = 30 - 9 = 21\)
Suy ra \[{P_{min}} = 21\;\] đạt được khi
\(\left\{ {\begin{array}{*{20}{l}}{x.y.z = 1}\\{\frac{2}{z} = \frac{5}{y} = \frac{{100}}{x}}\\{x + 2y + 5z = 12}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x = 10}\\{y = \frac{1}{2}}\\{z = \frac{1}{5}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{{{\log }_a}b = 10}\\{{{\log }_b}c = \frac{1}{2}}\\{{{\log }_c}a = \frac{1}{5}}\end{array} \Rightarrow b = {c^2} = {a^{10}}} \right.} \right.} \right.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Phát biểu sau đúng hay sai?
Axit lactic vừa có tính chất của axit, vừa có tính chất của ancol.
Câu 4:
Phần tư duy khoa học / giải quyết vấn đề
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 5)
Top 5 đề thi Đánh giá năng lực trường ĐH Bách khoa Hà Nội năm 2023 - 2024 có đáp án (Đề 1)
Đề thi Đánh giá tư duy tốc chiến Đại học Bách khoa năm 2023-2024 có đáp án (Đề 1)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 3)
ĐGTD ĐH Bách khoa - Sử dụng ngôn ngữ Tiếng Anh - Thì tương lai hoàn thành
về câu hỏi!