Cho dãy số \(\left( {{u_n}} \right)\) được xác định bởi \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 1,{u_2} = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{{u_{n + 2}} + {u_n} = 2\left( {{u_{n + 1}} + 1} \right),n \in {\mathbb{N}^*}}\end{array}} \right.\). Giới hạn \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{u_n}}}{{{n^2}}}\) bằng (1) ________.
Cho dãy số \(\left( {{u_n}} \right)\) được xác định bởi \(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 1,{u_2} = 3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,}\\{{u_{n + 2}} + {u_n} = 2\left( {{u_{n + 1}} + 1} \right),n \in {\mathbb{N}^*}}\end{array}} \right.\). Giới hạn \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{u_n}}}{{{n^2}}}\) bằng (1) ________.
Quảng cáo
Trả lời:
Đáp án: “1”
Giải thích
\(\left\{ {\begin{array}{*{20}{c}}{{u_1} = 1,{u_2} = 3\quad {\rm{ (1)}}\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{ }}}\\{{u_{n + 2}} + {u_n} = 2\left( {{u_{n + 1}} + 1} \right)\quad (2)}\end{array}\quad (n \ge 1).} \right.\)
Đặt \({v_n} = {u_{n + 1}} - {u_n}\).
Ta có \((2) \Leftrightarrow {u_{n + 2}} - {u_{n + 1}} = {u_{n + 1}} - {u_n} + 2 \Leftrightarrow {v_{n + 1}} = {v_n} + 2\).
Suy ra \(\left( {{v_n}} \right)\) lập thành một cấp số cộng có số hạng đầu \({v_1} = 2\) và công sai \(d = 2\).
Nên \({v_n} = 2 + (n - 1).2 = 2n\).
Khi đó: \({u_n} = \left( {{u_n} - {u_{n - 1}}} \right) + \left( {{u_{n - 1}} - {u_{n - 2}}} \right) + \ldots + \left( {{u_2} - {u_1}} \right) + {u_1}\)
\( = {v_{n - 1}} + {v_{n - 2}} + \ldots + {v_1} + {u_1} = 2((n - 1) + (n - 2) + \ldots + 1) + 1\)
\( = 2\frac{{n(n - 1)}}{2} + 1 = n(n - 1) + 1.\)
Do đó: \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{u_n}}}{{{n^2}}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{n(n - 1) + 1}}{{{n^2}}} = \mathop {\lim }\limits_{n \to + \infty } \frac{{{n^2} - n + 1}}{{{n^2}}} = 1\). Vậy \(\mathop {\lim }\limits_{n \to + \infty } \frac{{{u_n}}}{{{n^2}}} = 1\).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Giải thích
Đơn vị của năng lượng liên kết là J hoặc MeV, trong đó: 1MeV=1,6.10-13J.
Chọn A, B
Lời giải
Công ty X muốn thiết kế các hộp chứa sản phẩm dạng hình trụ có nắp với dung tích bằng 330 cm3, bán kính đáy x cm, chiều cao ℎ cm. Khi thiết kế, công ty X luôn đặt mục tiêu sao cho vật liệu làm vỏ hộp là ít nhất, nghĩa là diện tích toàn phần hình trụ là nhỏ nhất.
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau :
Để công ty X tiết kiệm được vật liệu nhất thì bán kính x bằng 3,745 cm và chiều cao ℎ bằng 7,490 cm.
(Kết quả làm tròn đến chữ số thập phân thứ ba).
Giải thích
Ta có: \(V = \pi {x^2}h\).
Theo giả thiết thể tích hình trụ bằng \(330\;{\rm{c}}{{\rm{m}}^3}\) nên \(V = 330 \Leftrightarrow \pi {x^2}h = 330 \Leftrightarrow h = \frac{{330}}{{\pi {x^2}}}\)
Chi phí sản xuất là thấp nhất khi diện tích toàn phần hình trụ nhỏ nhất.
Ta có: \({S_{tp}} = {S_{xq}} + 2.{S_d} = 2\pi xh + 2\pi {x^2} = 2\pi \left( {{x^2} + \frac{{330}}{{\pi x}}} \right)\).
Áp dụng bất đẳng thức Cauchy cho 3 số dương ta có:
\({x^2} + \frac{{330}}{{\pi x}} = {x^2} + \frac{{165}}{{\pi x}} + \frac{{165}}{{\pi x}} \ge 3\sqrt[3]{{\frac{{27225.{x^2}}}{{{\pi ^2}.{x^2}}}}} = 3\sqrt[3]{{\frac{{27225}}{{{\pi ^2}}}}}\)
Dấu bằng xảy ra khi \({x^2} = \frac{{165}}{{\pi x}} \Leftrightarrow x = \sqrt[3]{{\frac{{165}}{\pi }}} \approx 3,745.\)
Để công ty X tiết kiệm được vật liệu nhất cần sản xuất hộp với kích thước \(h \approx 7,490\;{\rm{cm}}\) và \(x \approx 3,745\;{\rm{cm}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.