Câu hỏi:
24/10/2024 358Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên đoạn \(\left[ { - 1;3} \right]\) và có đồ thị là đường cong trong hình vẽ bên. Tập hợp \(T\) là tập tất cả các giá trị thực của tham số \(m\) để phương trình \(f\left( x \right) = m\) có 3 nghiệm phân biệt thuộc đoạn \(\left[ { - 1;3} \right]\).
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:
Giá trị nguyên nhỏ nhất của tập là _______.
Giá trị nguyên lớn nhất của tập là _______.
Quảng cáo
Trả lời:
Giá trị nguyên nhỏ nhất của tập \(T\) là -2 .
Giá trị nguyên lớn nhất của tập \(T\) là -1 .
Giải thích
Dựa vào đồ thị hàm số đã cho, phương trình \(f\left( x \right) = m\) có 3 nghiệm phân biệt thuộc đoạn \(\left[ { - 1;3} \right]\) thì \( - 3 < m < 0\) hay \(S = \left( { - 3;0} \right)\).
Vậy giá trị nguyên nhỏ nhất của tập \(T\) là -2 , giá trị nguyên lớn nhất của tập \(T\) là -1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: “595”
Giải thích
Số đường chéo của đa giác là: \(C_{10}^2 - 10 = 35\).
Cứ hai đường chéo cho ta một giao điểm, hơn nữa không có ba đường chéo nào đồng quy nên số giao điểm của các đường chéo là \(C_{35}^2 = 595\).
Lời giải
Đáp án: “36/67”
Giải thích
Bước 1. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 .
Số phần tử không gian mẫu \(n\left( {\rm{\Omega }} \right) = 36\).
Để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 thì số chấm trên hai con xúc xắc là một trong các trường hợp sau \(\left( {2;6} \right),\left( {3;5} \right),\left( {4;4} \right),\left( {5;3} \right),\left( {6;2} \right)\).
Vậy xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 là \(\frac{5}{{36}}\).
Bước 2. Tính xác suất thắng của mỗi bạn.
\(A\) là biến cố bạn \({\rm{A}}\) là người chiến thắng.
\(P\left( A \right) = \left( {\frac{5}{{36}}} \right) + \left( {\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{5}{{36}}} \right) + \left( {\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{5}{{36}}} \right) + \ldots \)
\( = \frac{5}{{36}}\left[ {1 + {{\left( {\frac{{31}}{{36}}} \right)}^2} + {{\left( {\frac{{31}}{{36}}} \right)}^4} + \ldots } \right]\)
\( = \frac{5}{{36}}.\frac{1}{{1 - {{\left( {\frac{{31}}{{36}}} \right)}^2}}} = \frac{{36}}{{67}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 29)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 8)