Câu hỏi:

24/10/2024 125 Lưu

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh \(a\), tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy. Gọi \(J\) là trung điểm \(SD\).

Mỗi phát biểu sau đây là đúng hay sai?

Phát biểu

ĐÚNG

SAI

Thể tích khối chóp \(S.ABCD\) bằng \(\frac{{{a^3}\sqrt 3 }}{6}\).

¡

¡

Thể tích khối tứ diện \(ACDJ\) bằng \(\frac{{{a^3}\sqrt 3 }}{{36}}\).

¡

¡

Khoảng cách từ điểm \(D\) đến mặt phẳng \(\left( {ACJ} \right)\) bằng \(\frac{{2a}}{{\sqrt {21} }}\).

¡

¡

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phát biểu

ĐÚNG

SAI

Thể tích khối chóp \(S.ABCD\) bằng \(\frac{{{a^3}\sqrt 3 }}{6}\).

¤

¡

Thể tích khối tứ diện \(ACDJ\) bằng \(\frac{{{a^3}\sqrt 3 }}{{36}}\).

¡

¤

Khoảng cách từ điểm \(D\) đến mặt phẳng \(\left( {ACJ} \right)\) bằng \(\frac{{2a}}{{\sqrt {21} }}\).

¡

¤

Giải thích

Gọi \(I\) là trung điểm cạnh \(AB\).

Vì tam giác \(SAB\) đều và nằm trong mặt phẳng vuông góc với đáy nên \(SI \bot \left( {ABCD} \right)\).

\( \Rightarrow SI = \frac{{a\sqrt 3 }}{2} \Rightarrow {V_{S.ABCD}} = \frac{1}{3}SI.{S_{ABCD}} = \frac{1}{3}.\frac{{a\sqrt 3 }}{2}.{a^2} = \frac{{{a^3}\sqrt 3 }}{6}\)

Ta có: \(\frac{{d\left( {J;\left( {ACD} \right)} \right)}}{{d\left( {S;\left( {ABCD} \right)} \right)}} = \frac{1}{2}\) và \({S_{ACD}} = \frac{1}{2}{S_{ABCD}}\).

\( \Rightarrow {V_{ACDJ}} = \frac{1}{2}.\frac{1}{2}.{V_{S.ABCD}} = \frac{1}{4}{V_{S.ABCD}} = \frac{{{a^3}\sqrt 3 }}{{24}}\).

Ta có: \(d\left( {D;\left( {ACJ} \right)} \right) = \frac{{3{V_{ACDJ}}}}{{{S_{ACJ}}}}\).

\({\rm{\Delta }}BCI\) vuông tại \(B\) có: \(C{I^2} = C{B^2} + B{I^2} = {a^2} + {\left( {\frac{a}{2}} \right)^2} = \frac{{5{a^2}}}{4}\).

\({\rm{\Delta }}SIC\) vuông tại \(I\) có: \(S{C^2} = S{I^2} + I{C^2} = \frac{{3{a^2}}}{4} + \frac{{5{a^2}}}{4} = 2{a^2}\).

\({\rm{\Delta }}SID\) vuông tại \(I\) có: \(S{D^2} = S{I^2} + I{D^2} = 2{a^2}\).

\({\rm{\Delta }}SCD\) có \(CJ\) là đường trung tuyến nên \(C{J^2} = \frac{{S{C^2} + C{D^2}}}{2} - \frac{{S{D^2}}}{4} = {a^2}\).

\({\rm{\Delta }}SAD\) cân tại \(A\left( {do\,\,SA = AD = a} \right)\) nên \(AJ\) vừa là đường trung tuyến vừa là đường cao.

\( \Rightarrow A{J^2} = A{D^2} - D{J^2} = A{D^2} - {\left( {\frac{{SD}}{2}} \right)^2} = \frac{{{a^2}}}{2}\)

Xét  có \({\rm{cos}}A = \frac{{A{J^2} + A{C^2} - C{J^2}}}{{2AJ.AC}} = \frac{3}{4}\).

\( \Rightarrow {\rm{sin}}\widehat {JAC} = \frac{{\sqrt 7 }}{4} \Rightarrow {S_{AJC}} = \frac{1}{2}AJ.AC.{\rm{sin}}\widehat {JAC} = \frac{{{a^2}\sqrt 7 }}{8}\).

\( \Rightarrow d\left( {D;\left( {ACJ} \right)} \right) = \frac{{a\sqrt {21} }}{7}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án: “36/67”

Giải thích

Bước 1. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 .

Số phần tử không gian mẫu \(n\left( {\rm{\Omega }} \right) = 36\).

Để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 thì số chấm trên hai con xúc xắc là một trong các trường hợp sau \(\left( {2;6} \right),\left( {3;5} \right),\left( {4;4} \right),\left( {5;3} \right),\left( {6;2} \right)\).

Vậy xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 là \(\frac{5}{{36}}\).

Bước 2. Tính xác suất thắng của mỗi bạn.

\(A\) là biến cố bạn \({\rm{A}}\) là người chiến thắng.

\(P\left( A \right) = \left( {\frac{5}{{36}}} \right) + \left( {\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{5}{{36}}} \right) + \left( {\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{5}{{36}}} \right) +  \ldots \)

\( = \frac{5}{{36}}\left[ {1 + {{\left( {\frac{{31}}{{36}}} \right)}^2} + {{\left( {\frac{{31}}{{36}}} \right)}^4} +  \ldots } \right]\)

\( = \frac{5}{{36}}.\frac{1}{{1 - {{\left( {\frac{{31}}{{36}}} \right)}^2}}} = \frac{{36}}{{67}}\)

Lời giải

Đáp án: “595”

Giải thích

Số đường chéo của đa giác là: \(C_{10}^2 - 10 = 35\).

Cứ hai đường chéo cho ta một giao điểm, hơn nữa không có ba đường chéo nào đồng quy nên số giao điểm của các đường chéo là \(C_{35}^2 = 595\).

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP