Cho khối chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,N\) là hai điểm nằm trên hai cạnh \(SC,SD\) sao cho \(\frac{{SM}}{{SC}} = \frac{1}{2},\frac{{SN}}{{ND}} = 2\), biết G là trọng tâm tam giác \(SAB\). Tỉ số thể tích \(\frac{{{V_{G.MND}}}}{{{V_{S.ABCD}}}} = \frac{m}{n}\), \(m,n\) là các số nguyên dương và \(\left( {m,n} \right) = 1\). Giá trị của \(m + n\) bằng (1) ____
Cho khối chóp \(S.ABCD\) có đáy là hình bình hành. Gọi \(M,N\) là hai điểm nằm trên hai cạnh \(SC,SD\) sao cho \(\frac{{SM}}{{SC}} = \frac{1}{2},\frac{{SN}}{{ND}} = 2\), biết G là trọng tâm tam giác \(SAB\). Tỉ số thể tích \(\frac{{{V_{G.MND}}}}{{{V_{S.ABCD}}}} = \frac{m}{n}\), \(m,n\) là các số nguyên dương và \(\left( {m,n} \right) = 1\). Giá trị của \(m + n\) bằng (1) ____
Quảng cáo
Trả lời:
Đáp án: “19”
Giải thích
Ta có:
Gọi E là trung điểm của \(AB\).
\( \Rightarrow d\left( {G,\left( {DMN} \right)} \right) = \frac{2}{3}d\left( {{\rm{E}},\left( {DMN} \right)} \right) = \frac{2}{3}d\left( {{\rm{A}},\left( {DMN} \right)} \right) = \frac{2}{3}d\left( {{\rm{A}},\left( {SCD} \right)} \right)\)
\( \Rightarrow {V_{G.MND}} = \frac{1}{3}.{S_{{\rm{\Delta }}DMN}}.d\left( {G,\left( {DMN} \right)} \right)\)
\( \Rightarrow \frac{{{V_{G.MND}}}}{{{V_{S.ABCD}}}} = \frac{1}{{18}} \Rightarrow m + n = 19\).
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: “36/67”
Giải thích
Bước 1. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 .
Số phần tử không gian mẫu \(n\left( {\rm{\Omega }} \right) = 36\).
Để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 thì số chấm trên hai con xúc xắc là một trong các trường hợp sau \(\left( {2;6} \right),\left( {3;5} \right),\left( {4;4} \right),\left( {5;3} \right),\left( {6;2} \right)\).
Vậy xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 là \(\frac{5}{{36}}\).
Bước 2. Tính xác suất thắng của mỗi bạn.
\(A\) là biến cố bạn \({\rm{A}}\) là người chiến thắng.
\(P\left( A \right) = \left( {\frac{5}{{36}}} \right) + \left( {\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{5}{{36}}} \right) + \left( {\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{5}{{36}}} \right) + \ldots \)
\( = \frac{5}{{36}}\left[ {1 + {{\left( {\frac{{31}}{{36}}} \right)}^2} + {{\left( {\frac{{31}}{{36}}} \right)}^4} + \ldots } \right]\)
\( = \frac{5}{{36}}.\frac{1}{{1 - {{\left( {\frac{{31}}{{36}}} \right)}^2}}} = \frac{{36}}{{67}}\)
Lời giải
Đáp án: “595”
Giải thích
Số đường chéo của đa giác là: \(C_{10}^2 - 10 = 35\).
Cứ hai đường chéo cho ta một giao điểm, hơn nữa không có ba đường chéo nào đồng quy nên số giao điểm của các đường chéo là \(C_{35}^2 = 595\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.