Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Lấy hai điểm \(M\) và \(N\) theo thứ tự di động trên \(AC\) và \(A'B\) sao cho \(AM = A'N = t\,\,\left( {0 \le t \le a\sqrt 2 } \right)\). Giá trị nhỏ nhất của \(MN\) bằng _______, khi đo góc (MN, AC) bằng _______.
Quảng cáo
Trả lời:
Cho hình lập phương \(ABCD.A'B'C'D'\) cạnh \(a\). Lấy hai điểm \(M\) và \(N\) theo thứ tự di động trên \(AC\) và \(A'B\) sao cho \(AM = A'N = t\,\,\left( {0 \le t \le a\sqrt 2 } \right)\). Giá trị nhỏ nhất của \(MN\) bằng \(\frac{a}{{\sqrt 2 }}\), khi đo góc (MN, AC) bằng 60o.
Giải thích

Kẻ \(MJ \bot AB\) suy ra \(AJ = \frac{t}{{\sqrt 2 }}\). Kẻ \(JI \bot A'B'\). Dễ thấy \(J,N,I\) thẳng hàng.
Ta có:
\(M{N^2} = M{J^2} + J{N^2} = \frac{{{t^2}}}{2} + {\left( {a - \frac{t}{{\sqrt 2 }}} \right)^2} = {t^2} - a\sqrt 2 t + {a^2} = {\left( {t - \frac{a}{{\sqrt 2 }}} \right)^2} + \frac{{{a^2}}}{2} \ge \frac{{{a^2}}}{2}\)
Suy ra \(MN \ge \frac{a}{{\sqrt 2 }}\). Dấu "=" xảy ra khi \(t = \frac{a}{{\sqrt 2 }}\). Khi đó \({M_s}N\) lần lượt là trung điểm của \(AC\) và \(A'B\).
Vộy giá trị nhỏ nhất của \(MN\) là \(\frac{a}{{\sqrt 2 }}\).
Dễ thấy khi đó \(MN//B'C\left( {//A'D} \right)\) nên \(\left( {MN,AC} \right) = \left( {B'C,AC} \right) = \widehat {B'CA}\).
Mà ta có tam giác \(AB'C\) đều nên \(\widehat {B'CA} = {60^ \circ }\).
Do đó \(\left( {MN,AC} \right) = {60^ \circ }\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
\(\forall n \in {\mathbb{N}^{\rm{*}}}\) ta có:
+ Với \({u_n} = {n^2}\) thì \({n^2} < {(n + 1)^2} \Leftrightarrow {u_n} < {u_{n + 1}} \Rightarrow {u_n} = {n^2}\) không là dãy số giảm.
+ Với \({u_n} = 2n\) thì \(2n < 2\left( {n + 1} \right) \Leftrightarrow {u_n} < {u_{n + 1}} \Rightarrow {u_n} = 2n\) không là dãy số giảm.
+ Với \({u_n} = {n^3} - 1\) thì \({n^3} - 1 < {(n + 1)^3} - 1 \Leftrightarrow {u_n} < {u_{n + 1}} \Rightarrow {u_n} = {n^3} - 1\) không là dãy số giảm.
+ Với \({u_n} = \frac{{2n + 1}}{{n - 1}}\) thì \({u_{n + 1}} - {u_n} = \frac{{ - 3}}{{\left( {n - 1} \right).n}} < 0\) nên dãy \({u_n} = \frac{{2n + 1}}{{n - 1}}\) là dãy số giảm.
Lời giải
Đáp án: “595”
Giải thích
Số đường chéo của đa giác là: \(C_{10}^2 - 10 = 35\).
Cứ hai đường chéo cho ta một giao điểm, hơn nữa không có ba đường chéo nào đồng quy nên số giao điểm của các đường chéo là \(C_{35}^2 = 595\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.