Trong không gian \(Oxyz\), cho ba điểm \(A\left( { - 1;6; - 1} \right),B\left( {2; - 1;3} \right),C\left( { - 3;5;1} \right)\).
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:

Để tứ giác \(ABCD\) là hình bình hành thì hoành độ điểm \(D\) là _______.
Chân đường cao \(H\) hạ từ đỉnh \(A\) của có tọa độ là (_______; _______;_______)
Trong không gian \(Oxyz\), cho ba điểm \(A\left( { - 1;6; - 1} \right),B\left( {2; - 1;3} \right),C\left( { - 3;5;1} \right)\).
Kéo số ở các ô vuông thả vào vị trí thích hợp trong các câu sau:
Để tứ giác \(ABCD\) là hình bình hành thì hoành độ điểm \(D\) là _______.
Chân đường cao \(H\) hạ từ đỉnh \(A\) của có tọa độ là (_______; _______;_______)
Quảng cáo
Trả lời:
Để tứ giác \(ABCD\) là hình bình hành thì hoành độ điểm \(D\) là -6 .
Chân đường cao \(H\) hạ từ đỉnh \(A\) của có tọa độ là (-3 ; 5 ;1 )
Giải thích
Ta có: \(\overrightarrow {BC} = \left( { - 5;6; - 2} \right)\)
Để tứ giác \(ABCD\) là hình bình hành thì \(\overrightarrow {AD} = \overrightarrow {BC} \)
\( \Leftrightarrow \left( {{x_D} + 1;{y_D} - 6;{z_D} + 1} \right) = \left( { - 5;6; - 2} \right) \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x_D} + 1 = - 5}\\{{y_D} - 6 = 6}\\{{z_D} + 1 = - 2}\end{array} \Rightarrow D\left( { - 6;12; - 3} \right)} \right.\).
Đường thẳng BC đi qua \(B(2; - 1;3)\) và nhận \(\overrightarrow {BC} = ( - 5;6; - 2)\) làm một vecto chỉ phương có phương trình: \(\left\{ {\begin{array}{*{20}{c}}{x = 2 - 5t}\\{y = - 1 + 6t}\\{z = 3 - 2t}\end{array}} \right.\)
Vì \(H \in BC\) nên \(H(2 - 5t; - 1 + 6t;3 - 2t) \Rightarrow \overrightarrow {AH} (3 - 5t; - 7 + 6t;4 - 2t)\).
Vì \(H\) là chân đường cao hạ từ đỉnh \(A\) của nên \(AH \bot BC\).
\( \Leftrightarrow \overrightarrow {AH} .\overrightarrow {BC} = 0 \Leftrightarrow - 5(3 - 5t) + 6( - 7 + 6t) - 2(4 - 2t) = 0 \Leftrightarrow t = 1\)
\( \Rightarrow H( - 3;5;1)\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
\(\forall n \in {\mathbb{N}^{\rm{*}}}\) ta có:
+ Với \({u_n} = {n^2}\) thì \({n^2} < {(n + 1)^2} \Leftrightarrow {u_n} < {u_{n + 1}} \Rightarrow {u_n} = {n^2}\) không là dãy số giảm.
+ Với \({u_n} = 2n\) thì \(2n < 2\left( {n + 1} \right) \Leftrightarrow {u_n} < {u_{n + 1}} \Rightarrow {u_n} = 2n\) không là dãy số giảm.
+ Với \({u_n} = {n^3} - 1\) thì \({n^3} - 1 < {(n + 1)^3} - 1 \Leftrightarrow {u_n} < {u_{n + 1}} \Rightarrow {u_n} = {n^3} - 1\) không là dãy số giảm.
+ Với \({u_n} = \frac{{2n + 1}}{{n - 1}}\) thì \({u_{n + 1}} - {u_n} = \frac{{ - 3}}{{\left( {n - 1} \right).n}} < 0\) nên dãy \({u_n} = \frac{{2n + 1}}{{n - 1}}\) là dãy số giảm.
Lời giải
Đáp án: “595”
Giải thích
Số đường chéo của đa giác là: \(C_{10}^2 - 10 = 35\).
Cứ hai đường chéo cho ta một giao điểm, hơn nữa không có ba đường chéo nào đồng quy nên số giao điểm của các đường chéo là \(C_{35}^2 = 595\).
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.