Trong không gian \({\rm{Ox}}yz\), cho ba điểm \(M\left( {1;1;1} \right),N\left( { - 1; - 1;0} \right),P\left( {3;1; - 1} \right)\). Xác định tọa độ điểm \(I\) thuộc mặt phẳng \(\left( {Oxy} \right)\) sao cho \(I\) cách đều ba điểm \(M,N,P\).
Quảng cáo
Trả lời:
Gọi tọa độ điểm \(I\left( {a;b;0} \right)\).Ta có:
\(\overrightarrow {IM} \left( {1 - a;1 - b;1} \right),\overrightarrow {IN} \left( { - 1 - a; - 1 - b;0} \right),\overrightarrow {IP} \left( {3 - a;1 - b; - 1} \right)\).
Theo giả thiết có: \(IM = IN = IP\).
\( \Leftrightarrow \left( {\begin{array}{*{20}{l}}{IM = IN}\\{IM = IP}\end{array}} \right)\). Khi đó ta có hệ:
\[\left( {\begin{array}{*{20}{c}}{{{(1 - a)}^2} + {{(1 - b)}^2} + 1 = {{(1 + a)}^2} + {{(1 + b)}^2}}\\{{{(1 - a)}^2} + {{(1 - b)}^2} + 1 = {{(3 - a)}^2} + {{(1 - b)}^2} + 1}\end{array}} \right) \Leftrightarrow \left( {\begin{array}{*{20}{c}}{4a + 4b = 1}\\{4a = 8}\end{array}} \right) \Leftrightarrow \left( {\begin{array}{*{20}{c}}{a = 2}\\{b = - \frac{7}{4}}\end{array}} \right).\]
Vậy tọa độ điểm \(I\left( {2; - \frac{7}{4};0} \right)\).
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: “36/67”
Giải thích
Bước 1. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 .
Số phần tử không gian mẫu \(n\left( {\rm{\Omega }} \right) = 36\).
Để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 thì số chấm trên hai con xúc xắc là một trong các trường hợp sau \(\left( {2;6} \right),\left( {3;5} \right),\left( {4;4} \right),\left( {5;3} \right),\left( {6;2} \right)\).
Vậy xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 là \(\frac{5}{{36}}\).
Bước 2. Tính xác suất thắng của mỗi bạn.
\(A\) là biến cố bạn \({\rm{A}}\) là người chiến thắng.
\(P\left( A \right) = \left( {\frac{5}{{36}}} \right) + \left( {\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{5}{{36}}} \right) + \left( {\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{5}{{36}}} \right) + \ldots \)
\( = \frac{5}{{36}}\left[ {1 + {{\left( {\frac{{31}}{{36}}} \right)}^2} + {{\left( {\frac{{31}}{{36}}} \right)}^4} + \ldots } \right]\)
\( = \frac{5}{{36}}.\frac{1}{{1 - {{\left( {\frac{{31}}{{36}}} \right)}^2}}} = \frac{{36}}{{67}}\)
Lời giải
Đáp án: “595”
Giải thích
Số đường chéo của đa giác là: \(C_{10}^2 - 10 = 35\).
Cứ hai đường chéo cho ta một giao điểm, hơn nữa không có ba đường chéo nào đồng quy nên số giao điểm của các đường chéo là \(C_{35}^2 = 595\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.