Câu hỏi:
24/10/2024 342Cho mặt phẳng \(\left( P \right):2x - 2y + z + 1 = 0\) và hai điểm \(A\left( {0;2;1} \right),B\left( {\frac{7}{9};\frac{2}{9};\frac{{17}}{9}} \right)\).
Mỗi phát biểu sau là đúng hay sai?
Phát biểu |
ĐÚNG |
SAI |
Hai điểm \(A\) và \(B\) nằm cùng phía nhau đối với mặt phẳng \(\left( P \right)\). |
¡ |
¡ |
Điểm \(M \in \left( P \right)\) sao cho \(\left| {MA - MB} \right|\) đạt giá trị lớn nhất là \(\left( {1;2;1} \right)\). |
¡ |
¡ |
Điểm \(N \in \left( P \right)\) sao cho \(NA + NB\) đạt giá trị nhỏ nhất là \(\left( { - 2; - 1;1} \right)\). |
¡ |
¡ |
Quảng cáo
Trả lời:
Phát biểu |
ĐÚNG |
SAI |
Hai điểm \(A\) và \(B\) nằm cùng phía nhau đối với mặt phẳng \(\left( P \right)\). |
¡ |
¤ |
Điểm \(M \in \left( P \right)\) sao cho \(\left| {MA - MB} \right|\) đạt giá trị lớn nhất là \(\left( {1;2;1} \right)\). |
¤ |
¡ |
Điểm \(N \in \left( P \right)\) sao cho \(NA + NB\) đạt giá trị nhỏ nhất là \(\left( { - 2; - 1;1} \right)\). |
¡ |
¤ |
Giải thích
Ta có \(\left( {2.0 - 2.2 - 1 + 1} \right)\left( {2.\frac{7}{9} - 2.\frac{2}{9} + \frac{{17}}{9} + 1} \right) < 0\) nên hai điểm \(A\) và \(B\) nằm khác phía đối với \(\left( P \right)\).
* Tìm \(M\).
Lấy điểm \(B'\left( {{x_{B'}};{y_{B'}};{z_{B'}}} \right)\) đối xứng với \(B\) qua \(\left( P \right)\).
Hạ \(BH \bot \left( P \right)\) suy ra \(\overrightarrow {{u_{BH}}} = \overrightarrow {{n_{\left( P \right)}}} = \left( {2; - 2;1} \right)\) nên phương trình đường thẳng \(BH\) là \(\left\{ \begin{array}{l}x = \frac{7}{9} + 2t\\y = \frac{2}{9} - 2t\,\,\left( {t \in \mathbb{R}} \right)\\z = \frac{{17}}{9} + t\end{array} \right.\).
Gọi tọa độ điểm \(H\) là \(H\left( {\frac{7}{9} + 2h;\frac{2}{9} - 2h;\frac{{17}}{9} + h} \right)\). Vì \(H \in \left( P \right)\) nên
\(2\left( {\frac{7}{9} + 2h} \right) - 2\left( {\frac{2}{9} - 2h} \right) + \left( {\frac{{17}}{9} + h} \right) + 1 = 0 \Leftrightarrow h = - \frac{4}{9}\) do đó \(H\left( {\frac{{ - 1}}{9};\frac{{10}}{9};\frac{{13}}{9}} \right)\).
\(B'\) đối xứng với \(B\) qua \(\left( P \right)\) nên \(H\) là trung điểm của \(BB'\).
Do đó \(\left\{ \begin{array}{l}{x_{B'}} + \frac{7}{9} = 2.\frac{{ - 1}}{9}\\{y_{B'}} + \frac{2}{9} = 2.\frac{{10}}{9} \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} = - 1\\{y_{B'}} = 2\\{z_{B'}} = 1\end{array} \right.\\{z_{B'}} + \frac{{17}}{9} = 2.\frac{{13}}{9}\end{array} \right.\) suy ra \(\left. {B'( - 1;2;1} \right)\).
Khi đó \(\left| {MA - MB} \right| = \left| {MA - MB'} \right| \le AB'\).
Dấu "=" xảy ra khi \(M\) là giao điểm của đường thẳng \(AB'\) và \(\left( P \right)\).
Có \(d\left( {A,\left( P \right)} \right) = \frac{2}{3},d\left( {B',\left( P \right)} \right) = \frac{4}{3}\) nên \(d\left( {B',\left( P \right)} \right) = 2d\left( {A,\left( P \right)} \right)\) do đó \(A\) là trung điểm của đoạn thẳng \(B'M\) suy ra \(M\left( {1;2;1} \right)\).
* Tìm \(N\).
\(NA + NB \ge AB\)
Dấu “=" xảy ra khi \(N\) là giao điểm của đường thẳng \(AB\) và \(\left( P \right)\).
Có \(d\left( {A,\left( P \right)} \right) = \frac{2}{3},d\left( {B,\left( P \right)} \right) = \frac{4}{3}\) nên \(d\left( {B,\left( P \right)} \right) = 2d\left( {A,\left( P \right)} \right)\) do đó \(\overrightarrow {AB} = 3\overrightarrow {AN} \) nên \(N\left( {\frac{7}{{27}};\frac{{38}}{{27}};\frac{{35}}{{27}}} \right)\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án: “595”
Giải thích
Số đường chéo của đa giác là: \(C_{10}^2 - 10 = 35\).
Cứ hai đường chéo cho ta một giao điểm, hơn nữa không có ba đường chéo nào đồng quy nên số giao điểm của các đường chéo là \(C_{35}^2 = 595\).
Lời giải
Đáp án: “36/67”
Giải thích
Bước 1. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 .
Số phần tử không gian mẫu \(n\left( {\rm{\Omega }} \right) = 36\).
Để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 thì số chấm trên hai con xúc xắc là một trong các trường hợp sau \(\left( {2;6} \right),\left( {3;5} \right),\left( {4;4} \right),\left( {5;3} \right),\left( {6;2} \right)\).
Vậy xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 8 là \(\frac{5}{{36}}\).
Bước 2. Tính xác suất thắng của mỗi bạn.
\(A\) là biến cố bạn \({\rm{A}}\) là người chiến thắng.
\(P\left( A \right) = \left( {\frac{5}{{36}}} \right) + \left( {\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{5}{{36}}} \right) + \left( {\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{{31}}{{36}}.\frac{5}{{36}}} \right) + \ldots \)
\( = \frac{5}{{36}}\left[ {1 + {{\left( {\frac{{31}}{{36}}} \right)}^2} + {{\left( {\frac{{31}}{{36}}} \right)}^4} + \ldots } \right]\)
\( = \frac{5}{{36}}.\frac{1}{{1 - {{\left( {\frac{{31}}{{36}}} \right)}^2}}} = \frac{{36}}{{67}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 18)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 29)
ĐGTD ĐH Bách khoa - Tư duy Toán học - Xác suất của biến cố và các quy tắc tính xác suất
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 6)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 8)